Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Die Wurzel einer positiven Zahl a ist diejenige positive Zahl, die quadriert a ergibt, also

    (√a)2 = a.

    Die Zahl unter der Wurzel nennt man Radikand.

Berechne ohne Taschenrechner.

1
7
9
=
Bemerkung: die Zahl unter der Wurzel nennt man "gemischte Zahl", sie bedeutet 
1
+
7
9
.
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Lernvideo
Quadratwurzel

Die Wurzel einer positiven Zahl a ist diejenige positive Zahl, die quadriert a ergibt, also

(√a)2 = a.

Die Zahl unter der Wurzel nennt man Radikand.

Beispiel 1
3
6
25
=
81
25
=
9
5
2
=
9
5
Beispiel 2
0,0016
=
16
10000
=
4
100
2
=
4
100
=
0,04
Unterscheide folgende Zahlenmengen:
  • N = {1, 2, 3, ...}
    Menge der natürliche Zahlen
  • Z = {0, ±1, ±2, ±3, ...}
    Menge der ganze Zahlen; enthält über N hinaus auch noch 0 und die negativen (ganzen) Zahlen
  • Q = {p/q | p ∈ Z, q ∈ N}
    Menge der rationalen Zahlen; enthält über Z hinaus auch noch alle (nicht ganzzahligen) Brüche
  • R
    Menge der reellen Zahlen; enthält über Q hinaus auch noch alle irrationalen Zahlen wie z.B. √2 oder π

a2 = a · a.

Beispiel
Berechne:
5
2
=
?
80
2
=
?
0,3
2
=
?
4
2
=
?
Zu den reellen Zahlen ℝ gehören alle rationalen Zahlen ℚ und alle irrationalen Zahlen.

Rationale Zahlen kann man als endlichen Bruch darstellen. Als Dezimalzahl haben sie keine, endlich viele Nachkommastellen oder die Nachkommastellen wiederholen sich periodisch.

Irrationale Zahlen kann man nicht als endlichen Bruch darstellen. Als Dezimalzahl haben sie unendlich viele Nachkommastellen, die sich nicht periodisch wiederholen.
Beispiel
Welche der reellen Zahlen sind rational, welche irrational?
3
3
5
2
0,1
6
2
 
 
1,4142135...
Beachte beim Rechnen mit Variablen, dass (weil a auch negativ sein könnte)

√(a²) = | a |

Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben

√(a²) = −a

Ob eine Variable unter der Wurzel positiv oder negativ ist, erschließt sich oft indirekt aus der Aufgabenstellung.

Beispiel
Gegeben ist der Term 
x
6
.
Welche Werte können für x eingesetzt werden und wie lautet der vereinfachte Term?

Der Heron-Algorithmus ist ein Verfahren, mit dem sich √a, also die Wurzel von a für a∈Q+, mit zunehmender Genauigkeit bestimmen lässt.

  1. Man startet am besten mit einer Zahl x1, deren Quadrat in etwa a entspricht. Teilt man a durch diesen Startwert x1, so erhält man eine Zahl y1, die zusammen mit x1 das Intervall absteckt, in dem √a liegt.
  2. Man rechnet nun die Mitte dieses Intervalls aus, also ½·(x1+y1), und fährt mit diesem neuen Wert (= x2) in dem Algorithmus fort.
Die dabei entstehenden Intervalle, die alle √a enthalten, werden immer kleiner und die Abschätzung somit immer ganauer.
Beispiel
Bestimme 
5
 auf drei Dezimalstellen genau.