Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Brüche - Potenzen, Matheübungen
Potenz von Brüchen und gemischten Zahlen, Potenzwerte mit negativen ganzzahligen Exponenten - 26 Aufgaben in 4 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Für diesen Aufgabentyp steht keine spezielle Hilfe zur Verfügung.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 6
in Level 4
Berechne die Potenzen ohne Taschenrechner. Gib Brüche als "a/b" bzw. "-a/b" ein.
1
2
3
=
−
1
2
3
=
Ergebnis prüfen
keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich.
Lösung anzeigen
Abbrechen
Stoff zum Thema
Stoff zum Thema anzeigen
Was bedeutet eine Potenz mit negativer Hochzahl, z.B. \(2^{-3}\)?
#1406
Ein negativer Exponent bedeutet, dass man den Kehrwert der Potenz mit positivem Exponenten bildet: \[ a^{-n} = \frac{1}{a^{n}} \qquad (a \ne 0) \] Der Exponent wird dabei positiv: \[ a^{-1} = \frac{1}{a}, \quad a^{-2} = \frac{1}{a^2}, \quad a^{-3} = \frac{1}{a^3}, \dots \]
Einfaches Zahlenbeispiel:
\[ 4^{-2} = \frac{1}{4^2} = \frac{1}{16} \]
Beispiel
Bestimme das Ergebnis.
\(\displaystyle \left(\frac35\right)^{-3}\)
Mathe-Aufgaben passend zu deinem Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Titel
×
...
Schließen
Speichern
Abbrechen