Hilfe
  • Beispiele für Ereignis und Gegenereignis:

    Ereignis A: Mindestens ein Schuss geht daneben.
    Gegenereignis A: Kein Schuss geht daneben.

    Ereignis B: Höchstens 9 von 10 gezogenen Kugeln sind rot.
    Gegenereignis B: Alle gezogenen Kugeln sind rot.

    Die Wahrscheinlichkeiten von Ereignis und Gegenereignis ergänzen sich jeweils zu 100%

Bestimme mit Hilfe des Gegenereignisses. Runde auf ganze Prozent.

  • Jakob wettet, dass er bei sechsmaligem Würfeln mindestens einmal Augenzahl 6 erhält. Mit welcher Wahrscheinlichkeit gewinnt er?
    P ≈ %
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Mehrstufige Zufallsexperimente, Baumdiagramm, Pfadregeln
Lernvideo

Mehrstufige Zufallsexperimente, Baumdiagramm, Pfadregeln

Kanal: Mathegym

Wie berechnet man die Wahrscheinlichkeit eines Elementarereignisses in einem mehrstufigen Zufallsexperiment?
#246
Bei einem mehrstufigen Zufallsexperiment erhält man die Wahrscheinlichkeit für ein Elementarereignis, indem man die Ast-Wahrscheinlichkeiten des zugehörigen Pfades im Baumdiagramm multipliziert (1. Pfadregel).
Was sind Beispiele für Ereignisse und ihre Gegenereignisse mit den Begriffen "mindestens" oder "höchstens"?
#247
Beispiele für Ereignis und Gegenereignis:

Ereignis A: Mindestens ein Schuss geht daneben.
Gegenereignis A: Kein Schuss geht daneben.

Ereignis B: Höchstens 9 von 10 gezogenen Kugeln sind rot.
Gegenereignis B: Alle gezogenen Kugeln sind rot.

Die Wahrscheinlichkeiten von Ereignis und Gegenereignis ergänzen sich jeweils zu 100%

Wie berechnet man die Wahrscheinlichkeit eines Ereignisses E in einem mehrstufigen Zufallsexperiment?
#248
Bei mehrstufigen Zufallsexperimenten kann ein Ereignis E mehrere Pfade im Baumdiagramm umfassen. Um die Wahrscheinlichkeit von E zu bestimmen, muss man die Wahrscheinlichkeiten dieser Pfade addieren (2. Pfadregel).
Beispiel
In einer Urne befinden sich zwei schwarze, zwei weiße und eine orange Kugeln. Es werden drei Kugeln hintereinander - ohne Zurücklegen - gezogen. Wie groß ist die Wahrscheinlichkeit, dass jede Farbe einmal drankommt?