Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Dezimalzahlen - Addition und Subtraktion, Matheübungen
Dezimalzahlen addieren und subtrahieren, auch mit Brüchen gemischt; Überschlagsrechnung - Lehrplan G9 (5.-13. Klasse) - 38 Aufgaben in 5 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe
+Video
ansehen
Hilfe zum Thema
Achte beim schriftlichen Addieren und Subtrahieren darauf, dass die Kommata direkt untereinander stehen. Für eine bessere Übersicht kannst du am Ende Nullen anhängen.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 6
in Level 2
Berechne
Zwischenschritte aktivieren
13,2
+
9,74
=
13,2
−
9,74
=
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Wie addiert oder subtrahiert man Dezimalzahlen schriftlich korrekt?
#76
Achte beim schriftlichen Addieren und Subtrahieren darauf, dass die Kommata direkt untereinander stehen. Für eine bessere Übersicht kannst du am Ende Nullen anhängen.
Beispiel
0,007
+
2,3
+
300,96
=
?
Wie funktioniert das Runden von Dezimalzahlen, insbesondere auf die zweite Nachkommastelle?
#477
Beim Runden von Dezimalzahlen gilt prinzipiell dieselbe Regel wie beim Runden von natürlichen Zahlen: Ob auf oder abgerundet wird bestimmt die Ziffer rechts von der, auf die gerundet werden soll:
335,0298 ≈
gerundet auf
300
100er
340
10er
335
Einer (Ganze)
335,0
Zehntel (die erste Dezimal- oder Nachkommastelle)
335,03
Hundertstel (die zweite Dezimal- oder Nachkommastelle)
335,030
Tausendstel (die dritte Dezimal- oder Nachkommastelle)
Wann sollte man Dezimalzahlen in Brüche umwandeln, um einen Termwert zu berechnen?
#87
Treten in einem Term sowohl Kommazahlen als auch Brüche auf, so steht es einem prinzipiell frei, ob man die Dezimalbrüche in Brüche umwandelt oder umgekehrt.
Periodische Dezimalbrüche sollten dagegen zum Weiterrechnen immer in Brüche umgewandelt werden.
Titel
×
...
Schließen
Speichern
Abbrechen