Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Dreiecke - gleichschenklig und gleichseitig, Matheübungen
Konstruktion gleichschenkliger und gleichseitiger Dreiecke sowie Bestimmung von Winkelgrößen in Drei- und Vielecken
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Ein Dreieck ist
gleichschenklig
, wenn zwei Seiten gleich lang sind. Folgende Bezeichnungen sind üblich:
Schenkel: die beiden Seiten, die gleich lang sind
Basis: Seite, von der beide Schenkel weggehen
Basiswinkel: Winkel, die an der Basis anliegen
Spitze: Ecke gegenüber der Basis
Äquivalent zu "gleichschenklig" sind die folgenden Eigenschaften:
achsensymmetrisch
zwei Winkel gleich groß (Basiswinkel)
Konstruiere (mit Zirkel und Lineal) ein gleichschenkliges Dreieck ABC mit den vorgegebenen Eigenschaften. Miss dann die gefragte Strecke und kreuze richtig an.
Zwischenschritte aktivieren
Gegeben:
Basis a
=
4 cm, h
a
=
4 cm
Die Seite
AB
hat dann gerundet die Länge
4,2 cm
4,5 cm
4,8 cm
5,1 cm
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema (+Video)
Lernvideo
Gleischenkliges und gleichseitiges Dreieck
Kanal: Mathegym
Wie berechnet man die Winkel in einem gleichschenkligen Dreieck, wenn ein Winkel bekannt ist?
#176
In einem gleichschenkligen Dreieck sind die Basiswinkel gleich groß.
Kennt man den Basiswinkel, so erhält man den Winkel gegenüber der Basis, indem man von 180° das Doppelte des Basiswinkels abzieht.
Kennt man dagegen den Winkel gegenüber der Basis, so muss man diesen von 180° abziehen und das Ergebnis halbieren, um den Basiswinkel zu bestimmen.
Was bedeutet "gleichschenklig" bei einem Dreieck und welche Bezeichnungen und äquivalenten Eigenschaften gibt es dazu?
#175
Ein Dreieck ist
gleichschenklig
, wenn zwei Seiten gleich lang sind. Folgende Bezeichnungen sind üblich:
Schenkel: die beiden Seiten, die gleich lang sind
Basis: Seite, von der beide Schenkel weggehen
Basiswinkel: Winkel, die an der Basis anliegen
Spitze: Ecke gegenüber der Basis
Äquivalent zu "gleichschenklig" sind die folgenden Eigenschaften:
achsensymmetrisch
zwei Winkel gleich groß (Basiswinkel)
Wie unterscheiden sich gleichseitige und gleichschenklige Dreiecke und welche Eigenschaften sind "gleichseitig" äquivalent?
#179
Ein spezielles gleichschenkliges Dreieck ist das
gleichseitige
Dreieck: Bei ihm sind nicht nur zwei, sondern alle drei Seiten gleich lang.
Äquivalent zu
gleichseitig
sind folgende Aussagen:
alle Winkel sind gleichgroß (jeweils 60°)
achsensymmetrisch bzgl. dreier unterschiedlicher Achsen
Beispiel
ε=?
Mathe-Aufgaben passend zu deinem Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Titel
×
...
Schließen
Speichern
Abbrechen