Hilfe
  • Die Kongruenz zweier Dreiecke erkennt man nicht immer sofort. Auf sein Augenmaß darf man sich außerdem auch nicht verlassen. Am sichersten lässt sich die Kongruenz zweier Dreiecke mit Hilfe der sog. Kongruenzsätze feststellen. Zwei Dreiecke sind demnach kongruent, wenn

    • sie in allen drei Seiten übereinstimmen (SSS).
    • sie in einer Seite und zwei zu dieser Seite gleich liegenden Winkeln übereinstimmen (WSW bzw. SWW).
    • sie in zwei Seiten und dem eingeschlossenen Winkel übereinstimmen (SWS).
    • sie in zwei Seiten und dem Winkel, der der größeren Seite gegenüberliegt, übereinstimmen (SsW).

Kreuze die richtige Antwort an (Mehrfachauswahl möglich).

  • graphik
    Das Viereck ABCD ist rechteckig. Welche der folgenden Argumente tragen dazu bei, die Kongruenz der Dreiecke AED und FCG zu beweisen?
    |AE| = |FG|, weil beide Seiten jeweils dem kleineren Winkel gegenüberliegen
    |CG| = |BC| = |AD|
    |DE| = |FC| (Punktsymmetrie)
    ∠EAD = ∠FCB (Wechselwinkel)
    ∠ADE = ∠GCF (Stufenwinkel)
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Kongruenz von Dreiecken
Lernvideo

Kongruenz von Dreiecken

Kanal: Mathegym

Was sind die vier Kongruenzsätze für Dreiecke?
#181
Die Kongruenz zweier Dreiecke erkennt man nicht immer sofort. Auf sein Augenmaß darf man sich außerdem auch nicht verlassen. Am sichersten lässt sich die Kongruenz zweier Dreiecke mit Hilfe der sog. Kongruenzsätze feststellen. Zwei Dreiecke sind demnach kongruent, wenn

  • sie in allen drei Seiten übereinstimmen (SSS).
  • sie in einer Seite und zwei zu dieser Seite gleich liegenden Winkeln übereinstimmen (WSW bzw. SWW).
  • sie in zwei Seiten und dem eingeschlossenen Winkel übereinstimmen (SWS).
  • sie in zwei Seiten und dem Winkel, der der größeren Seite gegenüberliegt, übereinstimmen (SsW).
Was bedeutet es, wenn zwei Figuren als kongruent bezeichnet werden?
#183
Zwei Figuren heißen kongruent, wenn sie deckungsgleich sind. Praktisch betrachtet heißt das, man kann sie so übereinander legen, dass an keiner Stelle etwas überlappt.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen