Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Dreiecke - rechtwinklig, Matheübungen
Satz des Thales und Anwendungen, u.a. Konstruktion von rechtwinkligen Dreiecken und Kreistangenten sowie Bestimmung von Winkelgrößen in Drei- und Vielecken - Lehrplan G9 (5.-13. Klasse) - 30 Aufgaben in 8 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Allgemeine Hilfe zu diesem Level
Skizziere und betrachte in der Figur auftretende rechte Winkel.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 3
in Level 2
Konstruiere das gegebene Viereck.
Zwischenschritte aktiviert
Ein Rechteck, bei dem die Diagonale e = 8 cm und die Seite d = 4 cm ist. Gib als Kontrolle die (gerundete) Länge der zweiten Rechteckseite an.
▉
6,9 cm
▉
7,2 cm
▉
7,5 cm
▉
7,8 cm
Schritt 1 von 2
Kreuze die Konstruktionen an, die zu einer Lösung führen:
Thaleskreis über der Rechteckseite d
Thaleskreis über der Diagonalseite e
Kreis um den Mittelpunkt der Rechteckseite d mit Radius 8cm
Kreis um eine geeignete Ecke mit Radius 4cm
Ergebnis prüfen
keine Berechtigung
GeoGebra
GeoGebra
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
GeoGebra-Editor
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
Geogebra-Editor anzeigen
Keine Zugriffsberechtigung
Geogebra steht nur angemeldeten Benutzern mit gültiger Lizenz zur Verfügung.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die
Hilfe
zu dieser Aufgabe an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Lernvideo
Satz des Thales+Kehrsatz+Beweise
Kanal: Mathegym
Was besagt der Satz des Thales und was ist der Thaleskreis?
#787
Satz des Thales:
Liegen A, B und C auf einem Kreis und geht
AB
durch den Mittelpunkt, so ist das Dreieck ABC bei C rechtwinklig. Man spricht vom "Thaleskreis" über
AB
.
Umgekehrt gilt: ist das Dreieck ABC bei C rechtwinklig, so liegt C auf dem Thaleskreis über
AB
.
Beispiel 1
Welche der folgenden Dreiecke sind rechtwinklig?
Beispiel 2
Ermittle durch Konstruktion alle Punkte, von denen aus die beiden Strecken a und b unter einem rechten Winkel erscheinen.
Titel
×
...
Schließen
Speichern
Abbrechen