Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Eigenschaften von Funktionen - Graphen spiegeln, Matheübungen
Funktionsterm so abändern, dass der zugehörige Graph an x-/y-Achse gespiegelt wird. - Lehrplan G9 (5.-12. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Hilfe
Beispielaufgabe
Sei G
f
der Graph einer Funktion f.
−f(x)
bewirkt eine Spiegelung von G
f
an der x-Achse, d.h. man multipliziert dazu den gesamten Funktionsterm mit −1.
f(−x)
bewirkt eine Spiegelung von von G
f
an der y-Achse, d.h. man ersetzt jede x-Variable im Term durch (−x).
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
G
h
entsteht aus G
f
durch Spiegelung an der y-Achse. Gib den zugehörigen Funktionsterm vereinfacht ein. Variablenpotenzen sind, wenn nicht anders vorgegeben, in der Form "x^n" zu schreiben.
Zwischenschritte aktivieren
f
x
=
x
3
−
2
h
x
=
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema
Wie bewirkt man eine Spiegelung des Graphen einer Funktion an der x- oder y-Achse?
#668
Sei G
f
der Graph einer Funktion f.
−f(x)
bewirkt eine Spiegelung von G
f
an der x-Achse, d.h. man multipliziert dazu den gesamten Funktionsterm mit −1.
f(−x)
bewirkt eine Spiegelung von von G
f
an der y-Achse, d.h. man ersetzt jede x-Variable im Term durch (−x).
Beispiel
f
x
=
1
−
3x
2
2x
+
1
Wie muss der Funktionsterm von f abgewandelt werden, damit der zugehörige Graph gegenüber G
f
an der x-Achse bzw. an der y-Achse gespiegel ist?
Titel
×
...
Schließen
Speichern
Abbrechen