Hilfe
  • Wenn es um die Optimierung einer bestimmten Größe geht, gehe wie folgt vor:
    1. Beschreibe die Größe, die möglichst groß oder möglichst klein werden soll (z.B. der Flächeninhalt einer Figur, das Volumen eines Körpers oder der Umsatz einer Ware) durch einen Term T, in dem die flexible Größe x (z.B. eine Seite der Figur oder des Körpers, der Preis der Ware) vorkommt.
    2. Falls weitere Variablen im Term vorkommen: Überlege dir, in welchem Zusammenhang sie zu x stehen. Stelle sie in Abhängigkeit von x dar und ersetze sie im obigen Term, so dass T nur noch von x abhängt. Überlege dir auch den Definitionsbereich von T(x).
    3. Bestimme jetzt mit den Werkzeugen der Infinitesimalrechnung (Ableitung etc.) die Stellen, an denen relative Extremata auftreten und beantworte damit die in der Aufgabe gestellten Fragen.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Beantworte mit Hilfe einer geeigneten Funktion.

  • Eine Firma vertreibt eine beliebte Kaffeesorte in 250g-Päckchen. Eine Marktanalyse hat ergeben, dass zwischen Packungspreis (=x) und der Anzahl verkaufter Päckchen/Monat (=s) folgender Zusammenhang besteht:
    s
    =
    150x
    2
    +
    7500
     
    gültig für 2
    <
    x
    <
    7
    Bei welchem Preis ergibt sich der höchste Umsatz?
    Antwort:
     
     
    € /Packung
     
    gerundet auf Ct
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie löst man Optimierungsaufgaben in der Mathematik?
#615
Wenn es um die Optimierung einer bestimmten Größe geht, gehe wie folgt vor:
  1. Beschreibe die Größe, die möglichst groß oder möglichst klein werden soll (z.B. der Flächeninhalt einer Figur, das Volumen eines Körpers oder der Umsatz einer Ware) durch einen Term T, in dem die flexible Größe x (z.B. eine Seite der Figur oder des Körpers, der Preis der Ware) vorkommt.
  2. Falls weitere Variablen im Term vorkommen: Überlege dir, in welchem Zusammenhang sie zu x stehen. Stelle sie in Abhängigkeit von x dar und ersetze sie im obigen Term, so dass T nur noch von x abhängt. Überlege dir auch den Definitionsbereich von T(x).
  3. Bestimme jetzt mit den Werkzeugen der Infinitesimalrechnung (Ableitung etc.) die Stellen, an denen relative Extremata auftreten und beantworte damit die in der Aufgabe gestellten Fragen.
Beispiel 1
Ein Spielzeughersteller setzt mit einem bestimmten Spielzeug, das er zu 35 € pro Stück verkauft, jährlich 280 000 € um. Eine Marktstudie zeigt, dass pro 1 € Preissenkung jeweils 1000 Stück mehr verkauft würden - sofern der Preis nicht unter 20 € fällt. Zu welchem Preis müsste das Spielzeug verkauft werden, um maximalen Umsatz zu erzielen?
Beispiel 2
graphik
Der Halbkreis hat den Radius r. Bestimme die Seiten des einbeschriebenen Rechtecks (in Abhängigkeit von r) so, dass die Rechtecksfläche möglichst groß ist und gib den maximalen Flächeninhalt an.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen