Hilfe
  • Für diesen Aufgabentyp steht keine spezielle Hilfe zur Verfügung.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 3 in Level 11
  • Zeichne die gegebenen Punkte in ein Koordinatensystem ein. Ergänze die Zeichnung so, dass ein achsensymmetrisches Trapez ABCD entsteht. Da es mehrere Lösungen gibt, wird für den fehlenden Punkt zusätzlich eine bestimmte Lage gefordert. Gib seine Koordinaten an.
  • A(0|1), B(5|1) und D(1|6)
    und:
    Die Strecken AD und BC sind gleich lang.
    C
     
     
    |
     
  • keine Berechtigung
GeoGebra
GeoGebra
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

GeoGebra-Editor

Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
Keine Zugriffsberechtigung
Geogebra steht nur angemeldeten Benutzern mit gültiger Lizenz zur Verfügung.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich.
Stoff zum Thema
Welche sind die fünf besonderen Vierecke und wie werden sie beschrieben?
#495

Rechteck, Quadrat, Parallelogramm, Raute und Trapez sind besondere Vierecke.

  • Ein Rechteck erkennt man daran, dass benachbarte Seiten senkrecht zueinander stehen.
  • Beim Quadrat stehen benachbarte Seiten senkrecht zueinander (wie beim Rechteck), außerdem sind alle Seiten gleich lang.
  • Beim Parallelogramm kommt es darauf an, dass gegenüberliegende Seiten jeweils parallel zueinander sind (damit auch gleich lang).
  • Bei einer Raute müssen (wie beim Quadrat) alle vier Seiten gleich lang sein (damit auch parallel) - aber nicht senkrecht zueinander stehen.
  • Von einem Trapez spricht man, wenn es ein Paar gegenüberliegender paralleler Seiten gibt.
Diese aufgezählten Figuren schließen einander nicht aus. Z.B. ist ein Quadrat auch ein (spezielles) Rechteck und ebenso eine (spezielle) Raute.
Welche besonderen Vierecke gibt es, wie sind sie definiert und welche Symmetrieeigenschaften besitzen sie?
#386
Viereck Definition achsen-
sym.
im Allg.
punkt-
sym.
im Allg.
Spezialfälle
achsen-
symmetrisches
Trapez
Mittelsenkrechte von zwei gegenüberliegenden Seiten als Symmetrieachse ja nein Rechteck (Quadrat)
Drachen Diagonale als Symmetrieachse ja nein Raute (Quadrat)
Parallelogramm gegenüberliegende Seiten parallel nein ja Rechteck, Raute (Quadrat)
Rechteck alle Winkel 90° ja ja Quadrat
Raute alle vier Seiten gleich lang ja ja Quadrat
Quadrat Rechteck mit vier gleich langen Seiten ja ja
Was sind die charakteristischen Eigenschaften von Quadrat, Raute, Rechteck, Parallelogramm, Drachen und Trapez?
#1207
Viereck Definition
Trapez zwei parallele Seiten
Drachen eine Diagonale als Symmetrieachse
Parallelogramm gegenüberliegende Seiten parallel
Rechteck vier rechte Winkel
Raute alle vier Seiten gleich lang
Quadrat vier rechte Winkel, alle vier Seiten gleich lang
Wie beschriftet man Vielecke korrekt bezüglich Ecken und Seiten?
#980
Beachte bei der Beschriftung von Vielecken den Drehsinn: Jedes Dreieck, Viereck usw. wird GEGEN den Uhrzeigersinn an den Ecken mit den großgeschriebenen Buchstaben A, B, C usw. beschriftet. Die Seiten werden ebenfalls gegen den Uhrzeigersinn jedoch mit kleingeschriebenen Buchstaben a, b, c usw. beschriftet. Dabei liegt die Seite a dem Eckpunkt A, die Seite b dem Eckpunkt b usw. gegenüber.