Hilfe
  • µ = 2γ

Sei γ der Randwinkel und µ der Mittelpunktswinkel bzgl. einer Kreissehne. Bestimme die Winkelmaße unter folgender Bedingung:

  • γ ist um 20° kleiner als µ.
    γ
    =
    °
     
           
     
    µ =
    °
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Ein Kreis wird durch eine Sehne a in zwei Bögen unterteilt. Man betrachte den größeren der beiden Bögen (falls gleichgroß: einen der beiden Halbkreise):
  • Von jedem Punkt des sogenannten Fasskreisbogens erscheint die Sehne unter demselben Winkel γ (Randwinkel oder Umfangswinkel).
  • Vom Kreismittelpunkt aus erscheint die Sehne dagegen unter dem Winkel µ = 2γ, d.h. der Mittelpunktswinkel ist immer doppelt so groß wie der Umfangswinkel.
  • Durch Spiegelung an a erhält man den zweiten Fasskreisbogen (zweites Bild). Das Fasskreisbogenpaar (die Sehnenendpunkte gehören nicht dazu) ist also der geometrische Ort aller Punkte, von denen aus a unter demselben Winkel erscheint.
  • Im Spezialfall a = Durchmesser (s.o.) ergänzen sich die Fasskreisbögen (Halbkreise) zum Thaleskreis, der Randwinkel beträgt also hier stets 90°.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen