Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Stammfunktion einer Potenzfunktion: Für alle ganzen Zahlen n ≠ -1 gilt

    ∫ xn dx = 1 / (n + 1) · xn + 1 + C

    Man geht also umgekehrt zum Ableiten vor: beim Ableiten wird zuerst mit n multipliziert, dann der Exponent n um 1 reduziert. Beim Bilden der Stammfunktion wird zuerst der Exponent n um 1 vergrößert, dann durch n+1 geteilt.

    Spezialfall n = -1:

    ∫ 1/x dx = ln |x| + C

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 1
  • Ergänze so, dass F eine vereinfachte Stammfunktion von f ist. Brüche sind in der Form a/b zu schreiben.
  • f
     
    x
    =
    2
     
    x
    3
    F
    x
    =
     
    x
  • Checkos: 0 max.
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Wie berechnet man die Stammfunktion einer Potenzfunktion?
#570
Stammfunktion einer Potenzfunktion: Für alle ganzen Zahlen n ≠ -1 gilt

∫ xn dx = 1 / (n + 1) · xn + 1 + C

Man geht also umgekehrt zum Ableiten vor: beim Ableiten wird zuerst mit n multipliziert, dann der Exponent n um 1 reduziert. Beim Bilden der Stammfunktion wird zuerst der Exponent n um 1 vergrößert, dann durch n+1 geteilt.

Spezialfall n = -1:

∫ 1/x dx = ln |x| + C

Beispiel 1
Gib eine Stammfunktion für 
f
 
x
=
2
3
 
x
7
 an.
Beispiel 2
Gib eine Stammfunktion für 
f
 
x
=
3
x
7
 an.
Was sind die Stammfunktionen von exp(x), sin(x) und cos(x) und was ist bei der Integration von f(ax+b) zu beachten?
#576
  • Stammfunktionen von sin, cos und exp:

∫ sin (x) dx = − cos (x) + C

∫ cos (x) dx = sin (x) + C

∫ ex dx = ex + C

  • Beachte aufgrund der Kettenregel (a ≠ 0):

∫ f ( ax + b ) dx

= 1/a · F ( ax + b) + C

Beispiel
Gib jeweils eine Stammfunktion an.
a) 
f
 
x
=
2e
4x
+
1
a) 
f
 
x
=
sin
 
0,5x
π
Wie findet man die Stammfunktion eines Bruchterms, wenn im Zähler die Ableitung des Nenners steht?
#571
Ist f(x) ein Bruchterm und steht im Zähler der Ableitungsterm des Nenners, so lässt sich folgende Stammfunktion angeben:

f(x) = g'(x)/g(x)F(x) = ln|g(x)|

Beispiel
Bestimme, falls möglich, eine Stammfunktion:
a) 
f(x)
=
3
3x
+
1
b) 
f(x)
=
3x
+
1
3x
2
+
2x
c) 
f(x)
=
3x
+
1
3x
3
x

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level6 Aufgaben
Integral - Berechnung mit Stammfunktion
2. Level6 Aufgaben
Integral - Berechnung mit Stammfunktion
3. Level5 Aufgaben
Integral - Berechnung mit Stammfunktion
4. Level5 Aufgaben
Integral - Berechnung mit Stammfunktion
5. Level6 Aufgaben
Integral - Berechnung mit Stammfunktion
6. Level5 Aufgaben
Integral - Berechnung mit Stammfunktion

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich