Hilfe
  • Hilfe zum Thema

    Die Funktion F ist genau dann eine Stammfunktion von f, wenn F´ = f (wenn also f die Ableitung von F ist). Damit gilt folgender Zusammenhang

    F bzw. GF f (x)
    streng monoton steigend > 0 im betrachteten Intervall
    streng monoton fallend < im betrachteten Intervall
    keine Steigung (waagrechte Tangente) = 0
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 3
  • F ist Stammfunktion von f. Ermittle f(x). Brüche sind in der Form a/b, x-Potenzen in der Form x^n anzugeben.
  • F
     
    x
    =
    3x
    5
    2x
    2
    +
    2
    f
     
    x
    =
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Was ist eine Stammfunktion F von f und welche Beziehung besteht zwischen den Werten von f und F?
#401

Die Funktion F ist genau dann eine Stammfunktion von f, wenn F´ = f (wenn also f die Ableitung von F ist). Damit gilt folgender Zusammenhang

F bzw. GF f (x)
streng monoton steigend > 0 im betrachteten Intervall
streng monoton fallend < im betrachteten Intervall
keine Steigung (waagrechte Tangente) = 0
Wie berechnet man die Stammfunktion einer Potenzfunktion?
#570
Stammfunktion einer Potenzfunktion: Für alle ganzen Zahlen n ≠ -1 gilt

∫ xn dx = 1 / (n + 1) · xn + 1 + C

Man geht also umgekehrt zum Ableiten vor: beim Ableiten wird zuerst mit n multipliziert, dann der Exponent n um 1 reduziert. Beim Bilden der Stammfunktion wird zuerst der Exponent n um 1 vergrößert, dann durch n+1 geteilt.

Spezialfall n = -1:

∫ 1/x dx = ln |x| + C

Beispiel 1
Gib eine Stammfunktion für 
f
 
x
=
2
3
 
x
7
 an.
Beispiel 2
Gib eine Stammfunktion für 
f
 
x
=
3
x
7
 an.
Was sind die Stammfunktionen von exp(x), sin(x) und cos(x) und was ist bei der Integration von f(ax+b) zu beachten?
#576
  • Stammfunktionen von sin, cos und exp:

∫ sin (x) dx = − cos (x) + C

∫ cos (x) dx = sin (x) + C

∫ ex dx = ex + C

  • Beachte aufgrund der Kettenregel (a ≠ 0):

∫ f ( ax + b ) dx

= 1/a · F ( ax + b) + C

Beispiel
Gib jeweils eine Stammfunktion an.
a) 
f
 
x
=
2e
4x
+
1
a) 
f
 
x
=
sin
 
0,5x
π
Wie findet man die Stammfunktion eines Bruchterms, wenn im Zähler die Ableitung des Nenners steht?
#571
Ist f(x) ein Bruchterm und steht im Zähler der Ableitungsterm des Nenners, so lässt sich folgende Stammfunktion angeben:

f(x) = g'(x)/g(x)F(x) = ln|g(x)|

Beispiel
Bestimme, falls möglich, eine Stammfunktion:
a) 
f(x)
=
3
3x
+
1
b) 
f(x)
=
3x
+
1
3x
2
+
2x
c) 
f(x)
=
3x
+
1
3x
3
x