Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Integral - Flächenberechnung, Matheübungen
Bestimmung von Flächen zwischen Graph und x-Achse sowie Flächen zwischen zwei Graphen, auch in Abhängigkeit von Parametern - Lehrplan G9 (5.-13. Klasse) - 19 Aufgaben in 5 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe
+Video
ansehen
Hilfe zum Thema
Um die Fläche zu ermitteln, die zwischen zwei Graphen G
f
und G
g
im Intervall I = [a;b] (d.h. nach links und rechts begrenzt durch die Vertikalen x = a und x = b) liegt, gehe wie folgt vor:
Bilde die Differenz d = f − g und vereinfache den Term so weit wie möglich.
Ermittle eine Stammfunktion D von d.
Überprüfe, ob und wo sich beide Graphen im Intervall I schneiden. Kommst du mit dem Ansatz f(x) = g(x) rechnerisch nicht weiter, führt evtl. eine Skizze weiter (es reicht, wenn Schnittstellen durch die Skizze ausgeschlossen werden können!).
Evtl. Schnittstellen, die im Intervall I liegen, unterteilen I in Teilintervalle. Integriere nun die Differenz d über die einzelnen Teilintervalle. Dabei kannst du immer auf dieselbe Stammfunktion D zurückgreifen.
Addiere zum Schluss die BETRÄGE der einzelnen Integrale.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 4
in Level 3
Berechne den markierten Flächeninhalt. Ergebnis(se) mit 2 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
Zwischenschritte aktivieren
A
=
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Lernvideo
FLÄCHE berechnen INTEGRAL – Integralrechnung Flächenberechnung
Kanal: MathemaTrick
Wie bestimmt man die Fläche unter einem Graphen ohne Schnittpunkte mit der x-Achse?
#577
Besitzt der Graph einer Funktion im Intervall ]a;b[ keinen Schnittpunkt mit der x-Achse, so erhält man die Fläche, die er in diesem Intervall mit der x-Achse einschließt durch Integration von f zwischen den Integrationsgrenzen a und b. Bei negativem Integralwert (wenn das betrachtete Flächenstück unter der x-Achse liegt) ist der Betrag davon zu nehmen.
Wie berechnet man die Fläche zwischen zwei Graphen ohne Schnittpunkte in einem Intervall?
#578
Besitzen die Graphen zweier Funktionen f und g im Intervall ]a;b[ keinen Schnittpunkt, so erhält man die Fläche, die sie in diesem Intervall einschließen, durch Integration der Differenz f − g zwischen den Integrationsgrenzen a und b. Bei negativem Integralwert (wenn f < g im betrachteten Intervall) ist der Betrag davon zu nehmen.
Wie bestimmt man die Fläche zwischen zwei Graphen in einem Intervall, wenn deren Verlauf unbekannt ist?
#569
Um die Fläche zu ermitteln, die zwischen zwei Graphen G
f
und G
g
im Intervall I = [a;b] (d.h. nach links und rechts begrenzt durch die Vertikalen x = a und x = b) liegt, gehe wie folgt vor:
Bilde die Differenz d = f − g und vereinfache den Term so weit wie möglich.
Ermittle eine Stammfunktion D von d.
Überprüfe, ob und wo sich beide Graphen im Intervall I schneiden. Kommst du mit dem Ansatz f(x) = g(x) rechnerisch nicht weiter, führt evtl. eine Skizze weiter (es reicht, wenn Schnittstellen durch die Skizze ausgeschlossen werden können!).
Evtl. Schnittstellen, die im Intervall I liegen, unterteilen I in Teilintervalle. Integriere nun die Differenz d über die einzelnen Teilintervalle. Dabei kannst du immer auf dieselbe Stammfunktion D zurückgreifen.
Addiere zum Schluss die BETRÄGE der einzelnen Integrale.
Beispiel
Bestimme den Inhalt der Fläche, welche von den beiden Parabeln p und q mit
p
x
=
x
2
+
1
und
q
x
=
−
x
2
+
9
eingeschlossen wird.
Titel
×
...
Schließen
Speichern
Abbrechen