Hilfe
  • Allgemeine Hilfe zu diesem Level
    Thaleskreis
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 3 in Level 2
  • Zeichne einen Kreis mit Mittelpunkt M und Radius r. Zeichne den Punkt S ein. Konstruiere die Tangenten t1 und t2 an den Kreis durch den Punkt S und gib die (gerundeten) Koordinaten der Berührpunkte A und B an.
  • M( 0 | 0 )
    ;
    S( 4 | 5 )
    ;
    r
    =
    5 cm
    A(0 | 4,5)
     
        
     
    A( 0,5 | 4,5 )
     
        
     
    A( 0 | 5 )
     
        
     
    A( 0,5 | 5 )
    B( 5,4 | 1,1 )
     
        
     
    B( 5,4 | 0,6 )
     
        
     
    B( 4,9 | 1,1 )
     
        
     
    B( 4,9 | 0,6 )
  • keine Berechtigung
GeoGebra
GeoGebra
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

GeoGebra-Editor

Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
Keine Zugriffsberechtigung
Geogebra steht nur angemeldeten Benutzern mit gültiger Lizenz zur Verfügung.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Was ist der Schwerpunkt eines Dreiecks und wo befindet er sich?
#800
Der Schwerpunkt eines Dreiecks ist der Punkt, in dem sich alle drei Seitenhalbierenden schneiden.
Wie konstruiert man den Umkreis eines Dreiecks?
#505
Jeder Punkt auf der Mittelsenkrechten einer Strecke hat zu beiden Endpunkten der Strecke dieselbe Entfernung. Daher gilt folgender Satz:

Die drei Mittelsenkrechten eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt ist von allen drei Ecken gleich weit entfernt, ist also der Mittelpunkt des Umkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Umkreis.
graphik
Wie konstruiert man den Umkreis eines Dreiecks?
#506
Die Punkte der Winkelhalbierenden besitzen die Eigenschaft, dass sie zu beiden Schenkeln denselben Abstand haben. Daher gilt folgender Satz:

Die drei Winkelhalbierenden eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt hat von allen drei Seiten denselben Abstand, ist also der Mittelpunkt des Inkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Inkreis.
graphik
Was sind Seitenhalbierende in einem Dreieck und wie werden sie definiert?
#801
Seitenhalbierende verbinden jeweils einen Eckpunkt des Dreiecks mit der Mitte der gegenüberliegenden Seite.
Was besagt der Satz des Thales und was ist der Thaleskreis?
#787
Satz des Thales:
  • Liegen A, B und C auf einem Kreis und geht AB durch den Mittelpunkt, so ist das Dreieck ABC bei C rechtwinklig. Man spricht vom "Thaleskreis" über AB.
  • Umgekehrt gilt: ist das Dreieck ABC bei C rechtwinklig, so liegt C auf dem Thaleskreis über AB.
Beispiel
Ermittle durch Konstruktion alle Punkte, von denen aus die beiden Strecken a und b unter einem rechten Winkel erscheinen.
graphik

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen