Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Koordinatengeometrie im Raum - Ebenen - Normalen- und Koordinatenform, Matheübungen
Ebene durch drei Punkte, Punkt auf Ebene, besondere Lage zum Koordinatensystem
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Hilfe
Überprüfe, ob die Koordinaten von P die Ebenengleichung erfüllen. (Punktprobe)
Um zu überprüfen, ob der Punkt P(p
1
| p
2
| p
3
) in der Ebene E: n
1
x
1
+ n
2
x
2
+ n
3
x
3
+ n
0
= 0 enthalten ist, setze P in E ein, d.h. überprüfe die Aussage n
1
p
1
+ n
2
p
2
+ n
3
p
3
+ n
0
= 0 auf Richtigkeit.
Überprüfe, ob der Punkt P in der Ebene E liegt.
Ebene E
:
3x
1
+
4x
2
+
2x
3
−
12
=
0
Liegt der Punkt P(2|1|1) in der Ebene E?
Ja
Nein
Liegt der Punkt Q(4|-1|2) in der Ebene E?
Ja
Nein
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Checkos: 0 max.
Ergebnis prüfen
Wenn du ein Benutzerkonto hast,
logge dich bitte zuvor ein.
Stoff zum Thema
Wie überprüft man, ob ein Punkt P in einer Ebene E in Koordinatenform liegt?
#608
Um zu überprüfen, ob der Punkt P(p
1
| p
2
| p
3
) in der Ebene E: n
1
x
1
+ n
2
x
2
+ n
3
x
3
+ n
0
= 0 enthalten ist, setze P in E ein, d.h. überprüfe die Aussage n
1
p
1
+ n
2
p
2
+ n
3
p
3
+ n
0
= 0 auf Richtigkeit.
Wie erkennt man, ob eine Ebene E in Koordinatenform durch den Ursprung geht oder zu einer Achse bzw. Ebene parallel ist?
#609
E: n
1
x
1
+ n
2
x
2
+ n
3
x
3
+ n
0
= 0 ist
Ursprungsebene (d.h. enthält den Ursprung des Koordinatensystems) genau dann, wenn n
0
= 0.
z.B. 3x
1
+ 2x
2
− x
3
= 0 [keine Konstante am Ende].
parallel zur x
1
-Achse genau dann, wenn n
1
= 0.
z.B. 2x
2
− x
3
+ 5 = 0 [x
1
kommt nicht vor].
parallel zur x
1
x
2
-Ebene genau dann, wenn n
1
= n
2
= 0.
z.B. 2x
3
+ 3 = 0 [x
1
und x
2
kommen nicht vor].
Für die anderen Koordinatenachsen und -ebenen analog.
Wie leitet man die Normalenform einer Ebene aus drei gegebenen Punkten ab?
#610
Ist eine Ebene durch drei Punkte A, B, C eindeutig definiert (d.h. die Punkte dürfen nicht alle auf einer Geraden liegen), so kann man einen der Punkte als Aufpunkt und das Vektorprodukt zweier Verbindungsvektoren als Normalenvektor für ihre Gleichung in Normalenform verwenden.
Beispiel
Gib für die Ebene E, die durch die drei Punkte A(2|2|-2), B(3|-3|-5) und C(5|-3|4) geht, eine Gleichung in Normalenform (Koordinatendarstellung) an.
Welche Komponenten sind für die Normalengleichung einer Ebene notwendig?
#687
Die allgemeine Normalengleichung der Ebene erhält man aus einem Normalenvektor und einem Aufpunkt P.
Beispiel
Die Ebene E besitzt den Normalenvektor
n
=
−
1
−
1
4
und enthält den Punkt P(0|2|0).
Mathe-Aufgaben passend zu deinem Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Titel
×
...
Schließen
Speichern
Abbrechen