Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Koordinatengeometrie im Raum - Geraden - gegenseitige Lage, Matheübungen
Bestimmung der Lagebeziehung zweier Geraden (identisch/echt parallel, sich schneidend oder windschief). - Lehrplan für 5.-13. Klasse - 59 Aufgaben in 10 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Für diesen Aufgabentyp steht keine spezielle Hilfe zur Verfügung.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 6
in Level 8
Untersuche beide Geraden hinsichtlich ihrer Lage und kreuze richtig an.
g:
x
=
7
8
+
t
·
34
17
h:
x
=
0
9
+
t
·
−
2
−
1
Die Geraden g und h
sind identisch.
sind (echt) parallel.
schneiden sich.
Ergebnis prüfen
keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Welche Vektoren kommen in der Parameterform einer Geraden vor und welche Bedeutung haben sie?
#596
Bei einer Gleichung in Parameterform wird der Ortsvektor zu einem Aufpunkt (Stützvektor) und ein Richtungsvektor der Geraden angegeben. Der Ortsvektor "verankert" die Gerade im Koordinatensystem, der Richtungsvektor gibt ihre Richtung vor. Weder der Orts- noch der Richtungsvektor sind eindeutig festgelegt.
Beispiel
Gegeben ist die Gerade g
:
X
=
2
2
−
3
+
μ
·
−
1
1
2
.
(a) Gib für g eine andere Gleichung in Parameterform an, die weder im Ortsvektor noch im Richtungsvektor mit der Gleichung oben übereinstimmt.
(b) Gib eine Gleichung an für die Gerade h, die parallel zu g ist und durch den Punkt (1|2|-5) geht.
Wie bestimmt man die Lagebeziehung zweier Geraden im Raum und wie erfolgt die rechnerische Ermittlung?
#597
Um zwei Geraden g und h hinsichtlich ihrer Lage zueinander zu untersuchen, betrachtet man zunächst ihre Richtungsvektoren.
Sind diese linear abhängig, so sind g und h identisch oder parallel zueinander. Zur Unterscheidung prüft man, ob z.B. der Aufpunkt von g auf h liegt (wenn ja:identisch, ansonsten echt parallel).
Sind die Richtungsvektoren linear unabhängig, so setzt man beide Geraden gleich und betrachtet das entstehende Gleichungssystem (drei Gleichungen, zwei unbekannte Parameter). Lässt es sich eindeutig lösen, so schneiden sich g und h in einem Punkt S. Andernfalls (unlösbar) liegen g und h windschief zueinander.
Beispiel
g
:
X
=
1
−
1
5
+
μ
·
−
3
4
2
h
:
X
=
1
3
−
2
+
μ
·
6
8
−
4
i
:
X
=
0
−
3
14
+
μ
·
1
−
2
1
k
:
X
=
−
2
3
7
+
μ
·
2
−
8
3
−
4
3
Untersuche, wie die Gerade g zu den anderen Geraden liegt.
Titel
×
...
Schließen
Speichern
Abbrechen