Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Koordinatengeometrie im Raum - Schnittwinkel, Matheübungen
Schnittwinkel zweier Geraden | einer Geraden und einer Ebene | zweier Ebenen, auch im Sachzusammenhang - Lehrplan G9 (5.-13. Klasse) - 8 Aufgaben in 2 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Hilfe speziell zu dieser Aufgabe
Bestimme mit der üblichen Formel den Winkel zwischen geeigneten Vektoren und überlege, wie man aus diesem den gesuchten Winkel ermitteln kann.
Hilfe zum Thema
Für den Winkel α zwischen zwei Vektoren (stelle sie dir in ihren Fußpunkten zusammengelegt vor, 0° ≤ α ≤ 180°) gilt:
cos(α) = Skalarprodukt beider Vektoren : Produkt ihrer Längen
Den Winkel zwischen anderen geometrischen Objekten bestimmt man wie folgt:
Sich schneidende Geraden g und h: Bestimme den Winkel zwischen den zugehörigen Richtungsvektoren (Ist dieser > 90°, subtrahiere ihn noch von 180°)
Sich schneidende Gerade g und Ebene E: Subtrahiere den Winkel zwischen dem Richtungsvektor von g und dem Normalenvektor von E von 90° (und nimm den Betrag des Ergebnisses, falls nötig)
Sich schneidende Ebenen E und F: Bestimme den Winkel zwischen den zugehörigen Normalenvektoren (Ist dieser > 90°, subtrahiere ihn noch von 180°)
Für die Lotgerade g zu einer Ebene E durch einen Punkt P wählt man:
P als Aufhängepunkt und
den Normalenvektor von E als Richtungsvektor.
Für die Lotebene E zu einer Geraden g durch einen Punkt P wählt man:
P als Aufhängepunkt und
den Richtungsvektor von g als Normalenvektor.
Spiegelungen von geometrischen Objekten an anderen führt man durch wie folgt:
Spiegelung eines Punkts P an einer Geraden g: Bestimme die Lotebene E zu g durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
Spiegelung eines Punkts P an einer Ebene E: Bestimme die Lotgerade g zu E durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
Spiegelung einer Geraden g an einer Ebene E: Spiegle zwei Punkte von g an der Ebene E und stelle die Gerade durch die gespiegelten Punkte auf.
Spiegelung einer Kugel an einer Ebene E: Spiegle den Mittelpunkt der Kugel an E und übernimm den Radius.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 3
in Level 2
Bestimme den gesuchten Winkel im Sachzusammenhang. Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
Zwischenschritte aktivieren
Im Modell eines geplanten Einfamilienhauses liegt eine der rechteckigen Dachflächen in der Ebene mit der Koordinatendarstellung
E:
x
1
−
x
2
+
4x
3
−
20
=
0
. Auf dieser Dachfläche muss vertikal (also genau in positive
x
3
-Richtung) ein Schornstein errichtet werden. Bestimme den Winkel α zwischen Schornstein und Dachfläche in Grad und runde ihn auf eine Dezimale.
α ≈
°
Ergebnis prüfen
keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die
Hilfe
zu dieser Aufgabe an.
Lösung anzeigen
Abbrechen
Stoff zum Thema
Stoff zum Thema anzeigen
Wie bestimmt man den Schnittwinkel zwischen zwei Geraden, einer Geraden und einer Ebene sowie zwischen zwei Ebenen?
#798
Für den Winkel α zwischen zwei Vektoren (stelle sie dir in ihren Fußpunkten zusammengelegt vor, 0° ≤ α ≤ 180°) gilt:
cos(α) = Skalarprodukt beider Vektoren : Produkt ihrer Längen
Den Winkel zwischen anderen geometrischen Objekten bestimmt man wie folgt:
Sich schneidende Geraden g und h: Bestimme den Winkel zwischen den zugehörigen Richtungsvektoren (Ist dieser > 90°, subtrahiere ihn noch von 180°)
Sich schneidende Gerade g und Ebene E: Subtrahiere den Winkel zwischen dem Richtungsvektor von g und dem Normalenvektor von E von 90° (und nimm den Betrag des Ergebnisses, falls nötig)
Sich schneidende Ebenen E und F: Bestimme den Winkel zwischen den zugehörigen Normalenvektoren (Ist dieser > 90°, subtrahiere ihn noch von 180°)
Für die Lotgerade g zu einer Ebene E durch einen Punkt P wählt man:
P als Aufhängepunkt und
den Normalenvektor von E als Richtungsvektor.
Für die Lotebene E zu einer Geraden g durch einen Punkt P wählt man:
P als Aufhängepunkt und
den Richtungsvektor von g als Normalenvektor.
Spiegelungen von geometrischen Objekten an anderen führt man durch wie folgt:
Spiegelung eines Punkts P an einer Geraden g: Bestimme die Lotebene E zu g durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
Spiegelung eines Punkts P an einer Ebene E: Bestimme die Lotgerade g zu E durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
Spiegelung einer Geraden g an einer Ebene E: Spiegle zwei Punkte von g an der Ebene E und stelle die Gerade durch die gespiegelten Punkte auf.
Spiegelung einer Kugel an einer Ebene E: Spiegle den Mittelpunkt der Kugel an E und übernimm den Radius.
Titel
×
...
Schließen
Speichern
Abbrechen