Hilfe
  • Bei einem Laplace-Experiment kann man die Wahrscheinlichkeit eines Ereignisses E nach folgender Formel bestimmen:

    Anzahl der Ergebnisse in E : Anzahl aller möglichen Ergebnisse

Gib jeweils als Bruch an.

  • Aus dem Wort "Mathematik" wird zufällig ein Buchstabe ausgewählt.
    A: Es handelt sich um ein M
    B: Es handelt sich um einen Konsonanten
    P
     
    A
    =
    P
     
    B
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie berechnet man die Wahrscheinlichkeit eines Ereignisses bei einem Laplace-Experiment?
#447

Bei einem Laplace-Experiment kann man die Wahrscheinlichkeit eines Ereignisses E nach folgender Formel bestimmen:

Anzahl der Ergebnisse in E : Anzahl aller möglichen Ergebnisse

Was versteht man unter der Wahrscheinlichkeit eines Ereignisses?
#417
Bei vielen Zufallsexperimenten haben wir eine konkrete Erwartung, wie oft ein bestimmtes Ergebnis eintreten wird, wenn wir das Experiment mehrmals durchführen. Dieser Anteil wird durch die Wahrscheinlichkeit für das betrachtete Ergebnis ausgedrückt.
Beispiel
Wahrscheinlichkeit für "Augensumme 2" beim Würfeln?
Was ist ein Laplace-Experiment und wie berechnet sich die Wahrscheinlichkeit eines Elementarereignisses?
#167

Von einem Laplace-Experiment spricht man, wenn alle Elementarereignisse (also Ergebnisse) gleich wahrscheinlich sind. Es hängt letztlich von der gewählten Ergebnismenge ab, ob man von einem Laplace-Experiment sprechen kann oder nicht.

Liegt ein solches vor und ist n die Mächtigkeit der Ergebnismenge (also die Anzahl aller Ergebnisse), so hat jedes Elementarereignis die Wahrscheinlichkeit 1/n.

Was ist P(E) in der Wahrscheinlichkeitsrechnung und wie bestimmt man diesen Wert?
#165
Jedes Ereignis E hat eine bestimmte Wahrscheinlichkeit P(E). Hierbei handelt es sich um einen Wert zwischen 0 und 1 (oder 0% bis 100%). Auf die Wahrscheinlichkeit eines Ereignisses kann man schließen
  • durch Überlegung: Beim Würfeln mit einem normalen Würfel z.B. hat "Augenzahl 5" die Wahrscheinlichkeit 1/6 (ca. 16,7%).
  • durch Statistik: Wenn man ein Zufallsexperiment sehr oft durchgeführt hat, legt die relative Häufigkeit eines Ereignisses dessen Wahrscheinlichkeit nahe.