Hilfe
  • Den Schnittpunkt zweier Geraden ermittelt man, indem man ihre Funktionsterme gleichsetzt:

    1. Setze g(x) = h(x) und löse diese Gleichung nach x auf.
    2. Setze den ermittelten x-Wert in g(x) oder h(x) ein, so erhältst du den y-Wert des Schnittpunkts.

    Spezialfall: Den Schnittpunkt einer Gerade g mit der x-Achse (y = 0) ermittelt man durch g(x) = 0.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Gib die Gleichungen der beiden Geraden g und h an. Berechne anschließend ihren Schnittpunkt.

  • graphik
    Gerade g: y
    =
    Gerade h: y
    =
    Schnittpunkt: S
     
     
    |
     
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie berechnet man die Schnittpunkte einer Geraden mit den Koordinatenachsen?
#842

Schnittpunkte mit den Koordinatenachsen:

Jede Gerade, die nicht parallel zu einer der Koordinatenachsen verläuft, schneidet jede Achse genau einmal.
  • Der Schnittpunkt mit der y-Achse ist dort, wo die x-Koordinate den Wert 0 annimmt. Er kann aus der Geradengleichung abgelesen werden, z.B ist bei y=2x−3 der y-Achsenabschnitt −3 und damit Sy(0|−3)
  • Am Schnittpunkt mit der x-Achse ist die y-Koordinate 0. Um die x-Koordinate des Schnittpunkts zu bestimmen, setzt du in der Geradengleichung y=0 und löst die Gleichung nach x auf.
  • Die Stelle x, an der die Gerade die x-Achse schneidet, bezeichnet man auch als Nullstelle.
Beispiel
Bestimme die Schnittpunkte der Gerade 
g:y
=
3x
+
7
 mit den Koordinatenachsen.
Wie bestimmt man den Schnittpunkt zweier Geraden?
#155

Den Schnittpunkt zweier Geraden ermittelt man, indem man ihre Funktionsterme gleichsetzt:

  1. Setze g(x) = h(x) und löse diese Gleichung nach x auf.
  2. Setze den ermittelten x-Wert in g(x) oder h(x) ein, so erhältst du den y-Wert des Schnittpunkts.

Spezialfall: Den Schnittpunkt einer Gerade g mit der x-Achse (y = 0) ermittelt man durch g(x) = 0.

Beispiel
Bestimme durch Rechnung den Schnittpunkt der beiden Geraden g und h mit folgenden Gleichungen:
g
:
y
=
2,1
x
3
 
          
 
h
:
y
=
4
9
 
x
+
0,9
Welche vier Ausnahmefälle sind zu beachten, wenn man die Lage zweier Geraden zueinander untersucht?
#156
Folgende Ausnahmefälle hinsichtlich der Lage zweier Geraden sind zu beachten:
  • Beide Geraden sind (echt) parallel, haben also keinen Schnittpunkt. Das passiert, wenn beide Geraden dieselbe Steigung, aber unterschiedliche y-Achsenabschnitte haben. In dem Fall lässt sich die Gleichung g(x) = h(x) nicht lösen, es entsteht eine falsche Aussage wie z.B. 1=0.
  • Beide Geraden sind identisch, zu erkennen an derselben Steigung und demselben y-Achsenabschnitt. Die Gleichung g(x) = h(x) beschreibt in diesem Fall eine wahre Aussage wie z.B. 0 = 0, hat also unendlich viele Lösungen.
  • Eine Geraden ist senkrecht, z.B. x = 5; dann kann die andere Gerade sie, wenn überhaupt, nur bei x = 5 schneiden.
  • Eine Geraden ist waagrecht, z.B. y = 5; dann kann die andere Gerade sie, wenn überhaupt, nur in (?|5) schneiden.
Beispiel
f: y
=
1
8
 
x
+
2
     
g: x
=
4
     
h: y
=
3
     
i: y
=
0,125x
Untersuche paarweise, wie die Geraden zueinander liegen und bestimme gegebenenfalls den Schnittpunkt.