Hilfe
  • Sind zwei Geraden g und h zueinander senkrecht (orthogonal), so erfüllen ihre Steigungen die Gleichung mg · mh = −1.

    Am einfachsten erhält man die Steigung der zu g orthogonalen Geraden, indem man die Steigung von g als Bruch darstellt, diesen Bruch stürzt und das Vorzeichen ändert.

Gib die Steigung mh der zu g senkrechten Geraden h an. Schreibe Brüche in der Form a/b bzw. -a/b.

  • g: y
    =
    6x
    m
    h
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie prüft man rechnerisch, ob drei Punkte auf einer Geraden liegen?
#1194
Liegen drei Punkte auf einer Geraden?

Sind drei Punkte A(xA|yA), B(xB|yB) und C(xC|yC) gegeben, dann stelle eine Geradengleichung durch zwei Punkte, etwa A und B auf:
  1. Berechne Δy = yB − yA und Δx = xB − xA
  2. Berechne Steigung m = Δy/Δx
  3. Berechne y-Achsenabschnitt b = yA − m⋅xA
Setze m und b in die allgemeine Geradengleichung ein:
y = m⋅x + b
Setze dann Punkt C ein:
yC = m⋅xC + b

Erhältst du rechts und links vom Gleichheitszeichen die gleiche Zahl, liegen die drei Punkte auf einer Geraden, ansonsten nicht.
Beispiel
Liegen die drei Punkte auf einer Geraden?
A(1|2), B(3|8) und C(4|9)
Wie verhalten sich die Steigungen zweier zueinander senkrechter Geraden?
#868

Sind zwei Geraden g und h zueinander senkrecht (orthogonal), so erfüllen ihre Steigungen die Gleichung mg · mh = −1.

Am einfachsten erhält man die Steigung der zu g orthogonalen Geraden, indem man die Steigung von g als Bruch darstellt, diesen Bruch stürzt und das Vorzeichen ändert.

Wie verhalten sich die Steigungen von parallelen und senkrechten Geraden zueinander?
#558
Sind zwei Geraden parallel, so besitzen sie dieselbe Steigung.

Sind zwei Geraden g und h zueiandner senkrecht (orthogonal), so erfüllen ihre Steigungen die Gleichung mg · mh = −1.

Wie werden senkrechte und waagrechte Geraden in der Mathematik beschrieben?
#152
Eine Besonderheit bilden waagrechte und senkrechte Geraden.
  • senkrechte Gerade werden durch die Gleichung "x = c" beschrieben
  • waagrechte Gerade werden durch die Gleichung "y = c" beschrieben.

Beachte, dass die Gleichung der senkrechten Gerade keine Funktionsgleichung ist und somit weder ein y-Achsenabschnitt noch eine Steigung angegeben werden kann. Das ist schon daran erkennbar, dass hier Punkte des Graphen "übereinander" liegen, was bei einer Funktion nicht vorkommen darf.

Beispiel
Gib für die eingezeichneten Geraden sowie für die x-und y-Achse eine Geradengleichung an:
graphik
Welche vier Ausnahmefälle sind zu beachten, wenn man die Lage zweier Geraden zueinander untersucht?
#156
Folgende Ausnahmefälle hinsichtlich der Lage zweier Geraden sind zu beachten:
  • Beide Geraden sind (echt) parallel, haben also keinen Schnittpunkt. Das passiert, wenn beide Geraden dieselbe Steigung, aber unterschiedliche y-Achsenabschnitte haben. In dem Fall lässt sich die Gleichung g(x) = h(x) nicht lösen, es entsteht eine falsche Aussage wie z.B. 1=0.
  • Beide Geraden sind identisch, zu erkennen an derselben Steigung und demselben y-Achsenabschnitt. Die Gleichung g(x) = h(x) beschreibt in diesem Fall eine wahre Aussage wie z.B. 0 = 0, hat also unendlich viele Lösungen.
  • Eine Geraden ist senkrecht, z.B. x = 5; dann kann die andere Gerade sie, wenn überhaupt, nur bei x = 5 schneiden.
  • Eine Geraden ist waagrecht, z.B. y = 5; dann kann die andere Gerade sie, wenn überhaupt, nur in (?|5) schneiden.
Beispiel
f: y
=
1
8
 
x
+
2
     
g: x
=
4
     
h: y
=
3
     
i: y
=
0,125x
Untersuche paarweise, wie die Geraden zueinander liegen und bestimme gegebenenfalls den Schnittpunkt.
Wie bestimmt man den Schnittpunkt zweier Geraden?
#155

Den Schnittpunkt zweier Geraden ermittelt man, indem man ihre Funktionsterme gleichsetzt:

  1. Setze g(x) = h(x) und löse diese Gleichung nach x auf.
  2. Setze den ermittelten x-Wert in g(x) oder h(x) ein, so erhältst du den y-Wert des Schnittpunkts.

Spezialfall: Den Schnittpunkt einer Gerade g mit der x-Achse (y = 0) ermittelt man durch g(x) = 0.

Beispiel
Bestimme durch Rechnung den Schnittpunkt der beiden Geraden g und h mit folgenden Gleichungen:
g
:
y
=
2,1
x
3
 
          
 
h
:
y
=
4
9
 
x
+
0,9
Wie bestimmt man die Lagebeziehung zweier Geraden anhand ihrer Steigungen und y-Achsenabschnitte ohne zu rechnen?
#1122
Kennt man die Steigungen und y-Achsenabschnitte zweier Geraden, kann man OHNE RECHNUNG angeben, wie die Geraden zueinander liegen:
  • Steigungen gleich, y-Achsenabschnitte nicht gleich: Die Geraden sind echt parallel.
  • Steigungen gleich, y-Achsenabschnitte gleich: Die Geraden sind identisch.
  • Steigungen nicht gleich, y-Achsenabschnitte nicht gleich: Die Geraden schneiden sich.
  • Steigungen nicht gleich, y-Achsenabschnitte gleich: Die Geraden schneiden sich auf der y-Achse.
    Der Schnittpunkt kann direkt angegeben werden: S ( 0 | c )