Wie viele Lösungen hat das folgende Gleichungssystem?

  • x
    +
    y
    z
    =
    0
    x
    +
    2y
    =
    3
    y
    +
    z
    =
    3
     0    1    2    3    ∞ (unendlich viele)
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lineare Gleichungssysteme, Additionsverfahren, Beispiel 2
Lernvideo

Lineare Gleichungssysteme, Additionsverfahren, Beispiel 2

Kanal: Mathegym

Welche Verfahren gibt es zum Lösen von Gleichungssystemen und was ist ihr Ziel?
#365
Gleichungssysteme lassen sich z.B. mit Hilfe des Einsetzungsverfahrens oder des Additionsverfahrens lösen. Beide Verfahren laufen darauf hinaus, Gleichungen mit jeweils nur einer Unbekannten zu erhalten, nach der man dann auflösen kann.
Beispiel
Löse mit Hilfe des Additionsverfahrens:
2x
+
3y
=
5
2y
3
=
x
Wie funktioniert das Gauß-Verfahren zum Lösen linearer Gleichungssysteme?
#728

Gauß-Verfahren

Ein lineares Gleichungssystem kann übersichtlich gelöst werden, indem man es zunächst auf Stufenform bringt. Dies bezeichnet man als Gauß-Verfahren.

Dabei sind folgende Umformungen zugelassen:

  • Zwei Gleichungen werden miteinander vertauscht.
  • Eine Gleichung wird mit einer von Null verschiedenen Zahl multipliziert.
  • Eine Gleichung wird durch die Summe/Differenz von ihr und einer anderen Gleichung des Systems ersetzt.

Wenn man etwas Übung hat, können auch mehrere dieser Schritte gleichzeitig durchgeführt werden.

Wenn man das lineare Gleichungssystem auf Stufenform gebracht hat, löst man die Gleichungen schrittweise nach den gegebenen Variablen auf.

Es ist ganz wichtig, dass du das Gauß-Verfahren verstehst, damit du beim Lösen von Gleichungssystemen mit dem GTR in der Lage bist, die Taschenrechner-Anzeige korrekt interpretieren zu können.

Beispiel
Löse folgendes Gleichungssystem mit dem Gauß-Verfahren:
2x
1
 
 
4x
1
 
3x
2
+
2x
2
+
2x
2
 
x
3
+
3x
3
+
3x
3
 
=
1
 
=
1
 
=
6
 
x
1
=
?
x
2
=
?
x
3
=
?