Hilfe
  • Hilfe zum Thema
    Ein Intervall wird durch zwei Grenzen festgelegt, wobei die untere Grenze links, die obere Grenze rechts steht. Z.B. bezeichnet [2;5[ die Menge aller Zahlen von 2 bis 5, wobei 2 eingeschlossen ist (da eingeklammert) und 5 nicht mehr dazu gehört (da ausgeklammert).

    Links und/oder rechts kann auch ∞ stehen, das heißt dann, dass es keine untere bzw. keine obere Grenze gibt. Z.B. bezeichnet ]-3; ∞[ die Menge aller Zahlen, die größer sind als -3. Beachte, dass -∞ und ∞ immer ausgeschlossen werden.

    Weitere Beispiele:
    ]-7;5] heißt übersetzt -7 < x ≤ 5
    ]-∞;1[ heißt übersetzt x < 1
    [9;∞[ heißt übersetzt x ≥ 9
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 10 in Level 8
  • Wähle so aus, dass die Menge der oben angegebenen entspricht (Mehrfachauswahl möglich).
  • -2 < x ≤ 3
     
    [-2;3[
     
    ]-2;3[
     
    ]-2;3]
     
    [-2;3]
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Was ist beim Lösen von Ungleichungen im Vergleich zu Gleichungen zu beachten?
#157
Beim systematischen Lösen von Ungleichungen geht man ähnlich vor wie beim Lösen von Gleichungen. Beachte aber, dass sich das Ungleichheitszeichen umdreht bei:
  • Multiplikation mit einer negativen Zahl
  • Division durch eine negative Zahl
Wie löst man Ungleichungen zeichnerisch?
#158
Jede Ungleichung lässt sich zeichnerisch lösen:
  1. Betrachte die Terme links und rechts vom Ungleichheitszeichen als Funktionsterme und zeichne ihre Grafen.
  2. Gehe dann vom Schnittpunkt aus und gib den Bereich an, wo die Grafen entsprechend der Ungleichung über-/untereinander liegen.
Wie wird die Intervallschreibweise verwendet und was bedeutet die Klammersetzung? Wie wird z.B. "x < 1" in Intervallschreibweise notiert?
#259
Ein Intervall wird durch zwei Grenzen festgelegt, wobei die untere Grenze links, die obere Grenze rechts steht. Z.B. bezeichnet [2;5[ die Menge aller Zahlen von 2 bis 5, wobei 2 eingeschlossen ist (da eingeklammert) und 5 nicht mehr dazu gehört (da ausgeklammert).

Links und/oder rechts kann auch ∞ stehen, das heißt dann, dass es keine untere bzw. keine obere Grenze gibt. Z.B. bezeichnet ]-3; ∞[ die Menge aller Zahlen, die größer sind als -3. Beachte, dass -∞ und ∞ immer ausgeschlossen werden.

Weitere Beispiele:
]-7;5] heißt übersetzt -7 < x ≤ 5
]-∞;1[ heißt übersetzt x < 1
[9;∞[ heißt übersetzt x ≥ 9
Wie bestimmt man die Lösungsmenge der Ungleichung g(x) < h(x) für zwei schräge Geraden?
#260
Die Schnittstelle s zweier Geraden g und h (beide nicht vertikal, höchstens eine horizontal) unterteilt die Zahlengerade in zwei Intervalle ]-∞;s[ und ]s;∞[. In einem der beiden Intervalle liegt g vollständig über h, dieses Intervall ist also die Lösungsmenge der Ungleichung g(x) > h(x). Das andere Intervall ist die Lösungsmenge der Ungleichung g(x) < h(x).