Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Ermittle zuerst einen Term für die Zahl der Krankheitsfälle in der Form f(x)=b*ek*t und leite diesen ab.
  • Allgemeine Hilfe zu diesem Level
    Zur Ermittlung der Wachstumsgeschwindigkeit benötigt man die Ableitung der passenden natürlichen Exponentialfunktion.
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Beim Modellieren von Wachstums- und Abklingvorgängen benötigt man statt Exponentialfunktionen mit beliebiger Basis oft natürliche Exponentialfunktionen, z.B. wenn die Ableitung gesucht ist. Dazu ersetzt man die bisherige Basis a durch den äquivalenten Term eln(a) und schreibt f(t)=b⋅eln(a)⋅t. Umgekehrt kann man statt ek⋅t einfach (ek)t schreiben, so dass ek dem Wachstumsfaktor entspricht.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 3 in Level 3
  • Ermittle zum gegebenen Wachstums- bzw. Abklingvorgang die gesuchte Wachstumsgeschwindigkeit.
  • Eine ansteckende Krankheit breitet sich im Herbst eines Jahres exponentiell aus. Am 1.Oktober, 18 Uhr, werden die ersten 250 Fälle der Krankheit gemeldet, genau 14 Tage später ist die Zahl der gemeldeten Krankheitsfälle bereits auf 1000 gestiegen. Ermittle die Wachstumsgeschwindigkeit der Zahl der Krankheitsfälle am 1.November um 18 Uhr.
    Krankheitsfälle pro Tag
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema
Wie lautet der Funktionsterm für exponentielles Wachstum und Abklingen und wie bestimmt man die Parameter und die prozentuale Änderung?
#1227

Mithilfe eines Funktionsterms der Form f(t)=b⋅at kann man exponentielle Wachstums- und Abklingvorgänge modellieren. Dabei steht t für die Zeit (in einer bestimmten Zeiteinheit), b = f(0) für den Anfangsbestand und a für den Wachstumsfaktor.

Aus dem Wachstumsfaktor kann man die prozentuale Änderungsrate pro Zeiteinheit ermitteln, indem man (a-1)⋅100% rechnet, indem man also vom Wachstumsfaktor 1 subtrahiert und das Ergebnis in Prozent schreibt.

Beispiel
f
 
t
=
25000
·
1,025
t
 gibt näherungsweise die Bevölkerungsentwicklung einer Stadt an. t steht für die Zeit in Jahren seit 2000. Interpretiere die Werte 25000 und 1,025 im Sachzusammenhang und gib an, wie sich die Bevölkerungszahl der Stadt prozentual pro Jahr verändert.
Was sind Verdopplungszeit und Halbwertszeit und wie berechnet man sie aus einem Funktionsterm?
#1229

Für einen exponentiellen Wachstumsvorgang mit dem Funktionsterm f(t) gibt es stets eine Zeitspanne TV (Verdopplungszeit), in der sich die betrachtete Größe verdoppelt. Man ermittelt sie durch Auflösen der Gleichung f(TV) = 2 ⋅ f(0).

Entsprechend gibt es für einen exponentiellen Abklingvorgang mit dem Funktionsterm f(t) stets eine Zeitspanne TH (Halbwertszeit), in der sich die betrachtete Größe halbiert. Man erhält sie durch Auflösen der Gleichung f(TH) = 0,5 ⋅ f(0).

Beispiel
Eine Messgröße kann mithilfe des Terms 
f(t)
=
18
·
e
0,065
·
t
 modelliert werden. Dabei steht 
t
 
 
0
 für die Zeit in Minuten. Begründe, ob es eine Zeitspanne gibt, in der sich die Messgröße jeweils verdoppelt oder halbiert, und berechne diese Zeitspanne gegebenenfalls.
Wie kann man den Funktionsterm eines Wachstums- oder Abklingvorgangs zwischen beliebiger Basis und natürlicher Exponentialfunktion umwandeln?
#1228
Beim Modellieren von Wachstums- und Abklingvorgängen benötigt man statt Exponentialfunktionen mit beliebiger Basis oft natürliche Exponentialfunktionen, z.B. wenn die Ableitung gesucht ist. Dazu ersetzt man die bisherige Basis a durch den äquivalenten Term eln(a) und schreibt f(t)=b⋅eln(a)⋅t. Umgekehrt kann man statt ek⋅t einfach (ek)t schreiben, so dass ek dem Wachstumsfaktor entspricht.
Beispiel 1
Ein Patient erhält nach einer Operation eine Infusion mit Schmerzmittel. Näherungsweise soll angenommen werden, dass die Menge des Wirkstoffs im Blut des Patienten nach der Infusion exponentiell abnimmt. Zu Beginn sind 800mg des Wirkstoffs im Blut enthalten, nach drei Stunden hat sich die Wirkstoffmenge durch Verstoffwechslung in der Leber halbiert. Ermittle die Änderungsrate der Wirkstoffmenge im Blut nach einer Stunde. Gib zudem die Einheit und die Bedeutung dieses Werts im Sachzusammenhang an.
Beispiel 2
graphik
Die Abbildung zeigt den Graphen eines exponentiellen Wachstumsvorgangs. Bestimme einen passenden Term und verwende dabei die natürliche Exponentialfunktion.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen