Hilfe
  • Bestimme zunächst die Ableitung.

Besitzt der Graph der Funktion eine waagrechte Tangente und wenn ja wo? Gib "!" ein, wenn es keine solche Stelle gibt. Ergebnis(se) falls erforderlich auf die 2. Dezimalstelle gerundet eingeben!

  • f
     
    x
    =
    2
    x
    x
    1
        
    D
    f
    =
    ℝ \
     
    {
     
    1
     
    }
    x
     
     
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was bedeutet "streng monoton steigend/fallend" bei Funktionen?
#1135

Eine Funktion f ist in einem Intervall streng monton steigend, wenn für zwei unterschiedliche Werte a und b aus diesem Intervall mit a<b stets gilt f(a)<f(b).

Eine Funktion f ist in einem Intervall streng monton fallend, wenn für zwei unterschiedliche Werte a und b aus diesem Intervall mit a<b stets gilt f(a)>f(b).

Mit Monotonieintervall ist jeweils das größtmögliche Intervall innerhalb von Df gemeint, in dem eine strenge Monotonie vorliegt.

Welche Vorzeichenverläufe kann f´ in der Umgebung einer Nullstelle bei x_0 haben und wie lassen sich diese graphisch interpretieren?
#473
Ist f in einer Umgebung von x0 differenzierbar und besitzt Gf an der Stelle x0 eine waagrechte Tangente, d.h. also f ´ (x0) = 0, so befindet sich dort entweder ein Hoch-, ein Tief- oder ein Terrassenpunkt. Was genau, verrät der Vorzeichenverlauf von f ´:
  • "−,0,+" bedeutet für Gf "fallend,waagrecht,steigend", also Tiefpunkt (relatives Minimum von f)
  • "+,0,−" bedeutet für Gf "steigend,waagrecht,fallend", also Hochpunkt (relatives Maximum von f)
  • "−,0,−" bedeutet für Gf "fallend,waagrecht,fallend", also Terrassenpunkt
  • "+,0,+" bedeutet für Gf "steigend,waagrecht,steigend", also ebenfalls Terrassenpunkt
Beispiel 1
Schließe aus der Vorzeichentabelle von f´ auf evtl. Hoch-, Tief- und Terrassenpunkte von Gf.
x <
0
< x <
3
< x
f ´
 
x
0
+
0
+
Beispiel 2
Bestimme für die in ganz ℝ definierte ganzrationale Funktion f mit 
f
 
x
=
2x
3
3x
2
1
 sämtliche Extrempunkte mithilfe des Vorzeichwechselkriteriums der ersten Ableitung.
Was zeigt das Vorzeichen der Ableitung f'(x) einer Funktion an?
#400

Die Ableitung f´ einer differenzierbaren Funktion f liefert für jede definierte Stelle x die lokale Änderungsrate (= Steigung des Graphen von f an dieser Stelle). Insbesondere zeigt das Vorzeichen von f´ an, ob f im betrachteten Intervall zunimmt oder abnimmt:

f´(x) f bzw. Gf
> 0 streng monoton zunehmend bzw. wachsend
< 0 streng monoton abnehmend bzw. fallend
= 0 waagrechte Tangente

Achtung: die Tabelle ist von links nach rechts zu lesen, d.h. aus f´(x)>0 in einem bestimmten Intervall kann auf strenge Monotonie von f geschlossen werden - aber nicht umgekehrt. Wenn f in einem bestimmten Intervall streng monoton wächst, kann es dort durchaus einzelne Stellen geben, an denen die Ableitung gleich null ist (waagrechte Tangente).

Beispiel
Bestimme die Monotonieintervalle der ganzrationalen Funktion f aufgrund der gegebenen ersten Ableitung.
f ´
 
x
=
1
3
·
x
3
·
x
+
5
Wie bestimmt man rechnerisch lokale Maxima und Minima einer Funktion?
#698

Bestimmung der lokalen Maxima und Minima einer Funktion:

  1. Bestimme die Nullstellen der ersten Ableitung der Funktion.
  2. Überprüfe mithilfe des Vorzeichenwechsel-Kriteriums, ob im Graph ein Hoch- oder Tiefpunkt vorliegt.

Randextrema:

Untersuche, ob an den Intervallgrenzen lokale Maxima oder Minima vorliegen. Bestimme dazu den Funktionswert an den Intervallgrenzen und überprüfe, ob die erste Ableitung an den Intervallgrenzen größer oder kleiner als Null ist:
  • linker Rand: f'(x)<0, Randmaximum
  • linker Rand: f'(x)>0, Randminimum
  • rechter Rand: f'(x)<0, Randminimum
  • rechter Rand: f'(x)>0, Randmaximum

Bestimmung des globalen Maximums und Minimums:

  1. Der größte Wert der lokalen Maxima und Randmaxima wird als globales Maximum bezeichnet.
  2. Der kleinste Wert der lokalen Minima und Randminima wird als globales Minimum bezeichnet.
698