Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Potenzen mit rationalen Exponenten, Matheübungen
n-te Wurzel und Kehrbruch mit Hilfe von Potenzen ausdrücken, Umwandlung zwischen beiden Darstellungsformen, Lösen von Gleichungen durch geeignete Potenzierung - Lehrplan G9 (5.-13. Klasse) - 47 Aufgaben in 7 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe ansehen
Hilfe zum Thema
Zwei Terme T
1
und T
2
sind äquivalent, wenn sie die gleichen Defintionsmengen besitzen und bei jeder Einsetzung aus der Definitionsmenge den selben Wert annehmen.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 5
in Level 6
Sind die Terme äquivalent?
4
x
2
und
4
x
2
sind
äquivalent
nicht äquivalent
x
3
und
x
3
sind
äquivalent
nicht äquivalent
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema
Stoff zum Thema anzeigen
Wie kann man Potenzen mit negativen oder gebrochenen Exponenten in natürliche Exponenten umformen?
#374
Sei r eine positive rationale Zahl. Dann gilt
b
−r
= 1 / b
r
Sei b ≥ 0 und n eine natürliche Zahl. Dann gilt
b
1/n
=
n
√b
Sei b ≥ 0, m und n natürliche Zahlen. Dann gilt
b
m/n
=
n
√(b
m
) = (
n
√b)
m
Beispiel 1
27
2
3
=
?
0,75
−
2
=
?
Beispiel 2
Schreibe jeweils als Potenz (ohne Wurzelzeichen) mit möglichst einfacher Basis:
3
25
9
1
8
Beispiel 3
Vereinfache jeweils so, dass die Variable nicht im Nenner oder unter der Wurzel steht:
2
3x
2
3
64
27a
Wann gelten zwei Terme als äquivalent?
#375
Zwei Terme T
1
und T
2
sind äquivalent, wenn sie die gleichen Defintionsmengen besitzen und bei jeder Einsetzung aus der Definitionsmenge den selben Wert annehmen.
Beispiel
Überprüfe jeweils auf Äquivalenz:
x
2
und
x
2
x
2
3
und
x
3
Wie kann man die Gleichung T(x)^r = a lösen und wann gibt es keine Lösung?
#376
Sei T(x) ein beliebiger Term und r eine rationale Zahl. Die Gleichung
T(x)
r
= a
lässt sich (evtl.) lösen, indem man beide Seiten zunächst mit "1/r" potenziert. Dadurch erhält man:
T(x) = a
1/r
Keine Lösung erhält man z.B., wenn a negativ und r
eine gerade Zahl ist: x² = -1 (x² nie negativ)
eine echt rationale Zahl ist: x
1/3
= -1 (Ergebnis eines Wurzelterms nie negativ)
Beispiel
Löse die folgenden beiden Gleichungen:
1
3
x
+
1
−
3
4
=
8
3
x
2
−
2
=
−
1
2
Titel
×
...
Schließen
Speichern
Abbrechen