Hilfe
  • Lies die Regel rückwärts.
  • Sei r eine positive rationale Zahl. Dann gilt

    b−r = 1 / br

    Sei b ≥ 0 und n eine natürliche Zahl. Dann gilt

    b1/n = n√b

    Sei b ≥ 0, m und n natürliche Zahlen. Dann gilt

    bm/n = n√(bm) = (n√b)m

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Wandle um. Evtl. auftretende Brüche sind in der Form "a/b" bzw. "-a/b" anzugeben.

  • 3
    5
    2
    =
    5
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was ist die n-te Wurzel von a und unter welchen Bedingungen ist sie definiert?
#879

Mit der n-ten Wurzel von a≥0 ist die nicht negative Zahl gemeint, die mit n potenziert a ergibt. Z.B. ist 2 die 5-te Wurzel von 32, weil 25=32.

Beachte:Sowohl der Radikand a, also die Zahl unter der n-ten Wurzel, als auch die n-te Wurzel selbst, dürfen per Definition NICHT NEGATIV sein. Das wird oft missachtet, auch die Taschenrechner sind leider so programmiert, dass sie z.B. als dritte Wurzel von −8 die Zahl −2 ausgeben, obwohl eigentlich "Error" ausgegeben werden müsste.

Viele Schüler sehen diese Einschränkung überhaupt nicht ein und argumentieren, dass (−2)3=−8, weshalb die dritte Wurzel von −8 doch erlaubt sein müsse. Das ist für sich genommen richtig, doch würden sich, wenn man negative Zahlen unter einer Wurzel zuließe, Widersprüche bei der Anwendung von Potenzregeln ergeben.

Wie viele Lösungen hat die Gleichung x^n=a (n ∈ N) in Abhängigkeit von a und n?
#880
Die Gleichung xn=a (n ∈ N)
  • hat KEINE Lösung, wenn n eine gerade Zahl ist und a<0.
  • hat GENAU ZWEI Lösungen, wenn n eine gerade Zahl und a>0, nämlich die n-te Wurzel von a als auch deren Gegenzahl.
  • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a>0, nämlich die n-te Wurzel von a.
  • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a<0, nämlich die Gegenzahl der n-te Wurzel von |a|.
Beispiel
Löse, falls möglich:
a
 
x
4
=
5
     
b
 
x
4
=
5
     
c
 
x
3
=
5
     
d
 
x
3
=
5
     
e
 
x
3
=
0
Wie kann man Potenzen mit negativen oder gebrochenen Exponenten in natürliche Exponenten umformen?
#374
Sei r eine positive rationale Zahl. Dann gilt

b−r = 1 / br

Sei b ≥ 0 und n eine natürliche Zahl. Dann gilt

b1/n = n√b

Sei b ≥ 0, m und n natürliche Zahlen. Dann gilt

bm/n = n√(bm) = (n√b)m

Beispiel 1
27
2
3
=
?
 
          
 
0,75
2
=
?
Beispiel 2
Schreibe jeweils als Potenz (ohne Wurzelzeichen) mit möglichst einfacher Basis:
3
25
9
 
          
 
1
8
Beispiel 3
Vereinfache jeweils so, dass die Variable nicht im Nenner oder unter der Wurzel steht:
2
3x
2
 
          
 
3
64
27a
Wann gelten zwei Terme als äquivalent?
#375
Zwei Terme T1 und T2 sind äquivalent, wenn sie die gleichen Defintionsmengen besitzen und bei jeder Einsetzung aus der Definitionsmenge den selben Wert annehmen.
Beispiel
Überprüfe jeweils auf Äquivalenz:
x
2
 
und
 
x
2
 
          
 
x
2
3
 
und
 
x
3
Was sind die fünf grundlegenden Potenzgesetze?
#539
Potenzgesetze:
  1. Potenzen mit gleicher Basis werden multipliziert, indem man die Exponenten addiert und die Basis beibehält.
    ap · aq = ap + q

  2. Potenzen mit gleicher Basis werden dividiert, indem man die Exponenten subtrahiert und die Basis beibehält.
    ap : aq = ap − q

  3. Potenzen mit gleichen Exponenten werden multipliziert, indem man die Basen multipliziert und den Exponenten beibehält.
    aq · bq = (a · b)q

  4. Potenzen mit gleichen Exponenten werden dividiert, indem man die Basen dividiert und den Exponenten beibehält.
    aq : bq = (a : b)q

  5. Potenzen werden potenziert, indem man die Exponenten multipliziert.
    (ap)q = ap·q
Wie kann man die Gleichung T(x)^r = a lösen und wann gibt es keine Lösung?
#376
Sei T(x) ein beliebiger Term und r eine rationale Zahl. Die Gleichung

T(x)r = a

lässt sich (evtl.) lösen, indem man beide Seiten zunächst mit "1/r" potenziert. Dadurch erhält man:

T(x) = a1/r

Keine Lösung erhält man z.B., wenn a negativ und r
  • eine gerade Zahl ist: x² = -1 (x² nie negativ)
  • eine echt rationale Zahl ist: x1/3 = -1 (Ergebnis eines Wurzelterms nie negativ)
Beispiel
Löse die folgenden beiden Gleichungen:
1
3
 
x
+
1
3
4
=
8
 
          
 
3
x
2
2
=
1
2