Hilfe
  • Eine Funktion mit dem Term f(x) = a·x−n = a/xn (n natürliche Zahl, a≠0, x≠0) nennt man Potenzfunktion mit negativem Exponenten. Den zugehörigen Graphen nennt man Hyperbel der Ordnung n. Beachte:
    • x- und y-Achse sind Asymptoten des Graphen Gf.
    • Ist n gerade, so ist Gf symmetrisch zur y-Achse. Ist n ungerade, so ist Gf symmetrisch zum Ursprung des KOSY.
    • Ist a positiv, so verläuft Gf u.a. durch den ersten Quadranten des KOSY, ansonsten durch den vierten.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Ermittle den gesuchten Parameter. Gib "!" an, wenn es keine Lösung gibt.

  • Gegeben sei die Potenzfunktion \( f(x) = a \cdot x^n \) mit \( n = -2 \).

    Bestimmen Sie den Wert des Parameters \( a \), sodass der Graph der Funktion durch den Punkt \( (3, 4) \) geht.

    \( a=~ \)

    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was beschreibt die Funktionsgleichung und welche Eigenschaften hat der Graph einer Potenzfunktion mit negativem Exponenten?
#1247
Eine Funktion mit dem Term f(x) = a·x−n = a/xn (n natürliche Zahl, a≠0, x≠0) nennt man Potenzfunktion mit negativem Exponenten. Den zugehörigen Graphen nennt man Hyperbel der Ordnung n. Beachte:
  • x- und y-Achse sind Asymptoten des Graphen Gf.
  • Ist n gerade, so ist Gf symmetrisch zur y-Achse. Ist n ungerade, so ist Gf symmetrisch zum Ursprung des KOSY.
  • Ist a positiv, so verläuft Gf u.a. durch den ersten Quadranten des KOSY, ansonsten durch den vierten.
Beispiel

Bestimme den Wert des Parameters \( a \) für die Potenzfunktion \( f(x) = a \cdot x^{-3} \), sodass ihr Graph durch den Punkt \( \left( \frac{1}{2}, 16 \right) \) verläuft.