Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema

    Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

    \[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \]

    Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

    \[ \sqrt{a} : \sqrt{b} = \sqrt{a : b} \]

    Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

    \[ a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c} \]

    Beachte dabei: \( \sqrt{a} + \sqrt{b} \neq \sqrt{a + b} \)

    Oft kann man teilweise die Wurzel ziehen. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:

    \[ \sqrt{a^2 \cdot b} = \sqrt{a^2} \cdot \sqrt{b} = a \cdot \sqrt{b} \]
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 13
  • Vereinfache so weit wie möglich ohne Taschenrechner. Gib Brüche in der Form "a/b" ein. Gib "!" ein, falls das Ergebnis keine rationale Zahl ist.
  • 3
    ·
    27
    =
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Quadratwurzeln - Grundrechenarten, teilweise radizieren
Lernvideo

Quadratwurzeln - Grundrechenarten, teilweise radizieren

Kanal: Mathegym

Wie funktioniert die Addition und Subtraktion von Quadratwurzeln?
#226

Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

\[ a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c} \]

Achtung: \( \sqrt{a} + \sqrt{b} \neq \sqrt{a + b} \)

Beispiel 1
5
·
10
9
·
10
=
?
Beispiel 2
Fasse zusammen:
2
 
3
3
 
2
+
3
2
 
2
Beispiel 3
Fasse zusammen:
18
3
+
5
 
2
6
 
32
Wie lauten die Rechenregeln für Quadratwurzeln und was bedeutet "teilweise radizieren"?
#713

Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

\[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \]

Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

\[ \sqrt{a} : \sqrt{b} = \sqrt{a : b} \]

Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

\[ a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c} \]

Beachte dabei: \( \sqrt{a} + \sqrt{b} \neq \sqrt{a + b} \)

Oft kann man teilweise die Wurzel ziehen. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:

\[ \sqrt{a^2 \cdot b} = \sqrt{a^2} \cdot \sqrt{b} = a \cdot \sqrt{b} \]
Beispiel 1
9
·
16
=
?
9
+
16
=
?
9
+
16
=
?
Beispiel 2
1
2
·
3
7
·
2
3
·
14
=
?
Beispiel 3
50
·
2
=
?
50
2
=
?
50
=
?
Beispiel 4
108
10
·
3
=
?
Beispiel 5
108
300
=
?
Wie funktioniert die Multiplikation und Division von Quadratwurzeln und was versteht man unter teilweisem Radizieren?
#228

Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also \[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \]

Unter anderem ermöglicht diese Regel, Wurzeln teilweise zu radizieren. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:

\[ \sqrt{a^2 \cdot b} = \sqrt{a^2} \cdot \sqrt{b} = a \cdot \sqrt{b} \]
Beispiel 1
Radiziere teilweise:
720
=
?
Beispiel 2
Vereinfache:
3
 
45
·
18
=
?
Was bedeutet die Normalform eines Wurzelterms?
#573
Die Normalform eines Wurzelterms erfüllt zwei Bedingungen:
  1. Die Zahl unter der Wurzel ist quadratfrei, enthält also keinen quadratischen Teiler.
  2. Unter dem Bruchstrich stehen keine Wurzeln.
Beispiel
Bringe
 
80
 
in
 
Normalform.