Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Schnittwinkel, Matheübungen
Schnittwinkel zweier Geraden | einer Geraden und einer Ebene | zweier Ebenen, auch im Sachzusammenhang - Lehrplan für 5.-13. Klasse - 8 Aufgaben in 2 Levels
Hilfe
Hilfe zum Thema
Für den Winkel α zwischen zwei Vektoren (stelle sie dir in ihren Fußpunkten zusammengelegt vor, 0° ≤ α ≤ 180°) gilt:
cos(α) = Skalarprodukt beider Vektoren : Produkt ihrer Längen
Den Winkel zwischen anderen geometrischen Objekten bestimmt man wie folgt:
Sich schneidende Geraden g und h: Bestimme den Winkel zwischen den zugehörigen Richtungsvektoren (Ist dieser > 90°, subtrahiere ihn noch von 180°)
Sich schneidende Gerade g und Ebene E: Subtrahiere den Winkel zwischen dem Richtungsvektor von g und dem Normalenvektor von E von 90° (und nimm den Betrag des Ergebnisses, falls nötig)
Sich schneidende Ebenen E und F: Bestimme den Winkel zwischen den zugehörigen Normalenvektoren (Ist dieser > 90°, subtrahiere ihn noch von 180°)
Für die Lotgerade g zu einer Ebene E durch einen Punkt P wählt man:
P als Aufhängepunkt und
den Normalenvektor von E als Richtungsvektor.
Für die Lotebene E zu einer Geraden g durch einen Punkt P wählt man:
P als Aufhängepunkt und
den Richtungsvektor von g als Normalenvektor.
Spiegelungen von geometrischen Objekten an anderen führt man durch wie folgt:
Spiegelung eines Punkts P an einer Geraden g: Bestimme die Lotebene E zu g durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
Spiegelung eines Punkts P an einer Ebene E: Bestimme die Lotgerade g zu E durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
Spiegelung einer Geraden g an einer Ebene E: Spiegle zwei Punkte von g an der Ebene E und stelle die Gerade durch die gespiegelten Punkte auf.
Spiegelung einer Kugel an einer Ebene E: Spiegle den Mittelpunkt der Kugel an E und übernimm den Radius.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 5
in Level 1
Beschreibe in mehreren Teilschritten, wie man ...
… den Schnittwinkel zwischen einer Geraden g und einer in Parameterform gegebenen Ebene E ermittelt. (Gehe davon aus, dass sich g und E schneiden.)
Man bestimmt zuerst …
?
den Verbindungsvektor der Aufhängepunkte von g und E.
einen Normalenvektor von E.
den Schnittpunkt von E und g.
die Hesse’sche Normalenform von E.
Mit der üblichen Formel berechnet man den Winkel φ zwischen …
?
dem Normalenvektor von E und dem Richtungsvektor von g.
den beiden Richtungsvektoren von E.
den Ortsvektoren der Aufhängepunkte von E und g.
Der gesuchte Schnittwinkel zwischen E und g ergibt sich, indem man …
?
den Betrag der Differenz aus 90° und φ berechnet.
die Summe aus 90° und φ berechnet.
die Differenz aus 180° und φ berechnet.
Ergebnis prüfen
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die
Hilfe
zu dieser Aufgabe an.
Lösung anzeigen
Abbrechen
Stoff zum Thema
Stoff zum Thema anzeigen
Wie bestimmt man den Schnittwinkel zwischen zwei Geraden, einer Geraden und einer Ebene sowie zwischen zwei Ebenen?
#798
Für den Winkel α zwischen zwei Vektoren (stelle sie dir in ihren Fußpunkten zusammengelegt vor, 0° ≤ α ≤ 180°) gilt:
cos(α) = Skalarprodukt beider Vektoren : Produkt ihrer Längen
Den Winkel zwischen anderen geometrischen Objekten bestimmt man wie folgt:
Sich schneidende Geraden g und h: Bestimme den Winkel zwischen den zugehörigen Richtungsvektoren (Ist dieser > 90°, subtrahiere ihn noch von 180°)
Sich schneidende Gerade g und Ebene E: Subtrahiere den Winkel zwischen dem Richtungsvektor von g und dem Normalenvektor von E von 90° (und nimm den Betrag des Ergebnisses, falls nötig)
Sich schneidende Ebenen E und F: Bestimme den Winkel zwischen den zugehörigen Normalenvektoren (Ist dieser > 90°, subtrahiere ihn noch von 180°)
Für die Lotgerade g zu einer Ebene E durch einen Punkt P wählt man:
P als Aufhängepunkt und
den Normalenvektor von E als Richtungsvektor.
Für die Lotebene E zu einer Geraden g durch einen Punkt P wählt man:
P als Aufhängepunkt und
den Richtungsvektor von g als Normalenvektor.
Spiegelungen von geometrischen Objekten an anderen führt man durch wie folgt:
Spiegelung eines Punkts P an einer Geraden g: Bestimme die Lotebene E zu g durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
Spiegelung eines Punkts P an einer Ebene E: Bestimme die Lotgerade g zu E durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
Spiegelung einer Geraden g an einer Ebene E: Spiegle zwei Punkte von g an der Ebene E und stelle die Gerade durch die gespiegelten Punkte auf.
Spiegelung einer Kugel an einer Ebene E: Spiegle den Mittelpunkt der Kugel an E und übernimm den Radius.
Titel
×
...
Schließen
Speichern
Abbrechen