Hilfe
  • Stochastische Matrizen

    Stochastische Prozesse lassen sich sehr übersichtlich in Matrix-Schreibweise darstellen. Dazu werden die Zustandsverteilungen zu Vektoren zusammengefasst. Die Übergangswahrscheinlichkeiten finden sich in den Koeffizienten der Berechnungsvorschriften wieder und können übersichtlich in der Übergangsmatrix U dargestellt werden.

    Die Zustandsverteilung nach Schritt k+1 kann mittels einer Matrix-Multiplikation aus der Übergangsmatrix U und der Zustandsverteilung nach Schritt k berechnet werden.

    Eine Übergangsmatrix U zu einem vollständigen Prozessdiagramm nennt man auch stochastische Matrix und sie erfüllt folgende Eigenschaften:

    • U ist quadratisch (gleich viele Zeilen wie Spalten).
    • In der m-ten Spalte stehen die Übergangswahrscheinlichkeiten, mit denen man VOM m-ten Zustand aus die übrigen Zustände erreicht.
    • In der n-ten Zeile stehen die Übergangswahrscheinlichkeiten, mit denen man ZUM n-ten Zustand gelangt.
    • Summe der Spalteneinträge von U ist 1.

    Werden im Prozessdiagramm NICHT ALLE möglichen Zustände berücksichtigt, so wird die Übergangsmatrix zum beschriebenen stochastischen Prozess auch keine stochastische Matrix sein.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Bestimme die gesuchte Zustandsverteilung.

  • Ein stochastischer Prozess ist gegeben durch:
    v
    k
    +
    1
    =
    0,3
    0,7
     
     
     
     
    0,9
    0,1
    ·
    v
    k
    Startzustand: 50% in jedem der beiden Zustände.
    Bestimme die Zustandsverteilung nach zwei Schritten:
    v
    2
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was sind stochastische Matrizen und wie werden sie verwendet?
#718

Stochastische Matrizen

Stochastische Prozesse lassen sich sehr übersichtlich in Matrix-Schreibweise darstellen. Dazu werden die Zustandsverteilungen zu Vektoren zusammengefasst. Die Übergangswahrscheinlichkeiten finden sich in den Koeffizienten der Berechnungsvorschriften wieder und können übersichtlich in der Übergangsmatrix U dargestellt werden.

Die Zustandsverteilung nach Schritt k+1 kann mittels einer Matrix-Multiplikation aus der Übergangsmatrix U und der Zustandsverteilung nach Schritt k berechnet werden.

Eine Übergangsmatrix U zu einem vollständigen Prozessdiagramm nennt man auch stochastische Matrix und sie erfüllt folgende Eigenschaften:

  • U ist quadratisch (gleich viele Zeilen wie Spalten).
  • In der m-ten Spalte stehen die Übergangswahrscheinlichkeiten, mit denen man VOM m-ten Zustand aus die übrigen Zustände erreicht.
  • In der n-ten Zeile stehen die Übergangswahrscheinlichkeiten, mit denen man ZUM n-ten Zustand gelangt.
  • Summe der Spalteneinträge von U ist 1.

Werden im Prozessdiagramm NICHT ALLE möglichen Zustände berücksichtigt, so wird die Übergangsmatrix zum beschriebenen stochastischen Prozess auch keine stochastische Matrix sein.

Beispiel 1
Ein stochastischer Prozess zwischen drei Zuständen ist durch folgende Übergangsmatrix gegeben:
U
=
0,3
0,7
0
 
 
 
0
0,65
0,35
 
 
 
0
0
1
v
k
 
sei die Zustandsverteilung nach k Schritten.
Ist-Zustand: 15% in Zustand A, 48% in Zustand B, 37% in Zustand C
Bestimme die Zustandsverteilung einen Schritt vorher.
Beispiel 2
Ein stochastischer Prozess zwischen drei Zuständen ist durch folgende Übergangsmatrix gegeben:
U
=
0,3
0,7
0
 
 
 
0
0,65
0,35
 
 
 
0
0
1
v
k
 
sei die Zustandsverteilung nach k Schritten.
Startzustand: alle in Zustand 1
Bestimme die Zustandsverteilung nach 2 Schritten.
Beispiel 3
Ein stochastischer Prozess zwischen drei Zuständen A, B und C ist durch folgende Übergangsmatrix gegeben:
U
=
0,3
0,7
0
 
 
 
0,2
0,65
0,15
 
 
 
0
0
1
mit:
 
a
k
+
1
b
k
+
1
c
k
+
1
=
U
·
a
k
b
k
c
k
Interpretiere die Matrixeinträge in der Form:
? % BLEIBEN im Zustand ?.
bzw. ? % wechseln VON Zustand ? ZU Zustand ?

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level3 Aufgaben
Stochastische Prozesse II - rechnen mit Übergangsmatrix (ohne GTR)
2. Level4 Aufgaben
Stochastische Prozesse II - rechnen mit Übergangsmatrix (ohne GTR)
3. Level4 Aufgaben
Stochastische Prozesse II - rechnen mit Übergangsmatrix (ohne GTR)
4. Level4 Aufgaben
Stochastische Prozesse II - rechnen mit Übergangsmatrix (ohne GTR)

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich