Hilfe
  • Hilfe zum Thema
    Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

    (a + b) · (c + d) = ac + ad + bc + bd

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
  • Multipliziere die Klammern aus und vereinfache. Variablenpotenzen xn sind in der Form x^n anzugeben.
  • 3
    x
    ·
    5
    +
    x
    =
     ▉ 
    Schritt 1 von 2
    Multipliziere aus, ohne zusammenzufassen.
     
     
    3
    x
    ·
    5
    +
    x
    =
    +
     
    x
    +
     
    x
    +
     
    x
    2
    Fülle die Lücken passend, evtl. auch mit +1 oder −1.
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Wie löst man zwei eingeklammerte Terme auf, die jeweils nur Plusrechnungen enthalten und miteinander multipliziert werden?
#123
Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

(a + b) · (c + d) = ac + ad + bc + bd

Beispiel 1
Multipliziere aus und vereinfache:
2
5
 
uv
2
3
·
15u
2
+
1
uv
Beispiel 2
Multipliziere aus und vereinfache:
a) 
x
+
3
·
4
5x
b) 
10
a
·
7
+
b
c) 
x
2
1
2
3
 
a
·
3x
1
2
Wie löst man Klammern der Art a*(...) korrekt auf?
#1402
Achte beim Auflösen von Klammern der Art a⋅(...) oder (...)⋅(...) darauf, ob in der Klammer eine Summe oder ein Produkt steht. Nur bei einer Summe wird jeder Summand in der Klammer mit dem Faktor vor der Klammer multipliziert (D-Gesetz).
Beispiel
Unterscheide:
2x
·
3x
+
5y
2x
·
3x
·
5y
Wie bestimmt man die Anzahl der Summanden und die höchsten Potenzen der Variablen nach dem Ausmultiplizieren von Produkten mehrerer Summen von x-Potenzen?
#426
Die Anzahl der Summanden, die sich nach dem Ausmultiplizieren mehrerer Summen ergibt, lässt sich ebenso leicht bestimmen wie die höchsten Variablenpotenzen:
  • Anzahl der Summanden: Nimm von jeder Klammer die Anzahl der Summanden und bilde das Produkt.
  • Höchste Potenz einer Variable: Nimm aus jeder Klammer die höchste Potenz dieser Variable und multipliziere diese Potenzen.
Beispiel
Wie viele Summanden ergeben sich nach dem Ausmultiplizieren und welche höchsten Variablenpotenzen?
x
+
2
y
2
·
2y
5
x
5x
2
+
1
3
·
x
+
1
·
y
3