Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema

    Die drei Binomischen Formeln (BF) lauten:

    1. (a + b)² = a² + 2ab + b²
    2. (a − b)² = a² − 2ab + b²
    3. (a + b) (a − b) = a² − b²
    In dieser Richtung (links mit Klammer, rechts ohne) dienen die Formeln dazu, Klammern schneller auszumultiplizieren. Ohne Kenntnis der BF müsste man die Klammern auf herkömmlich Art ("jeder mit jedem") ausmultiplizieren.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 2 in Level 7
  • Vereinfache soweit wie möglich.
  • \( (x - 3y)^2 - 2x(5 - 0,6y) + (3 - x)\left(y + \frac{1}{3}\right)=~ \) ▉ 
    Schritt 1 von 4

    Multipliziere aus und gib vereinfacht an.

    \((x - 3y)^2=~\)
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Was sind die drei binomischen Formeln und wofür werden sie verwendet?
#264

Die drei Binomischen Formeln (BF) lauten:

  1. (a + b)² = a² + 2ab + b²
  2. (a − b)² = a² − 2ab + b²
  3. (a + b) (a − b) = a² − b²
In dieser Richtung (links mit Klammer, rechts ohne) dienen die Formeln dazu, Klammern schneller auszumultiplizieren. Ohne Kenntnis der BF müsste man die Klammern auf herkömmlich Art ("jeder mit jedem") ausmultiplizieren.
Beispiel 1
Berechne mithilfe der binomischen Formeln ohne Taschenrechner:
53
2
=
?
29
2
=
?
38
·
42
=
?
Beispiel 2
Multipliziere.
a
+
1
2
=
?
3
b
2
=
?
11
+
c
·
11
c
=
?
Beispiel 3
Multipliziere.
3
7
+
y
2
=
?
1,5x
2
3
2
=
?
q
2
+
1
6
·
q
2
1
6
=
?
Beispiel 4
Vereinfache soweit wie möglich.
2c
5d
2
c
5
·
3d
=
?