Hilfe
  • Allgemeine Hilfe zu diesem Level
    Suche möglichst große gemeinsame Faktoren!
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 4
  • Klammere optimal aus.
  • 1,5
    6
    ·
    a
    =
    ·
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Was bedeutet Ausklammern und wie funktioniert es?
#122
Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

a · b + a · c = a · (b + c)

(Ebenso mit − statt +)

Beispiel 1
110
z
·
44
=
22
·
5
22
·
2z
=
22
·
5
2z
Beispiel 2
 
 
38
·
z
z
·
19
·
x
=
19
·
2
·
z
z
·
19
·
x
=
19
·
z
·
2
19
·
z
·
x
=
19z
·
2
x
Beispiel 3
Klammere so aus, dass in der Klammer betragsmäßig möglichst kleine ganze Zahlen stehen:
8
9
 
z
+
4
2
3
Beispiel 4
Gib größtmögliche Zahlen/Potenzen an, die ausgeklammert werden können:
18
 
x
2
y
3
z
+
54
 
x
 
y
2
z
+
27
 
x
4
y
5
Beispiel 5
Klammere so viele Faktoren wie möglich aus:
14a
2
b
3
21ab
2
+
42ab
3
Wie wird eine Summe unter Verwendung des Distributivgesetzes ausgeklammert?
#655
Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

a · b + a · c = a · (b + c)


Man kann auch ganze Terme, z.B. Summen, ausklammern:

(x+y) · b + (x+y) · c = (x+y) · (b + c)