Hilfe
  • Unterscheide zwischen
    • a · (b · c) = a · b · c   (A-Gesetz)
    • a · (b + c) = a · b + a · c   (D-Gesetz)

Vereinfache. Variablenpotenzen sind in der Form "a^n" anzugeben, evtl. auftretende Brüche/gemischte Zahlen in der Form "a/b", "-a/b" oder a b/c".

  • 5s
    ·
    r
    ·
    7s
    +
    2r
    ·
    1
    3
    +
    s
    ·
    r
    s
    :
    2
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie löst man zwei eingeklammerte Terme auf, die jeweils nur Plusrechnungen enthalten und miteinander multipliziert werden?
#123
Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

(a + b) · (c + d) = ac + ad + bc + bd

Beispiel 1
Multipliziere aus und vereinfache:
a) 
x
+
3
·
4
5x
b) 
10
a
·
7
+
b
c) 
x
2
1
2
3
 
a
·
3x
1
2
Beispiel 2
Multipliziere aus und vereinfache:
2
5
 
uv
2
3
·
15u
2
+
1
uv
Beispiel 3
b
2
3
 
b
·
6a
·
a
30%
+
1
2
 
a
2
·
b
4ab
ab
2
Wie bestimmt man die Anzahl der Summanden und die höchsten Potenzen der Variablen nach dem Ausmultiplizieren von Produkten mehrerer Summen von x-Potenzen?
#426
Die Anzahl der Summanden, die sich nach dem Ausmultiplizieren mehrerer Summen ergibt, lässt sich ebenso leicht bestimmen wie die höchsten Variablenpotenzen:
  • Anzahl der Summanden: Nimm von jeder Klammer die Anzahl der Summanden und bilde das Produkt.
  • Höchste Potenz einer Variable: Nimm aus jeder Klammer die höchste Potenz dieser Variable und multipliziere diese Potenzen.
Beispiel
Wie viele Summanden ergeben sich nach dem Ausmultiplizieren und welche höchsten Variablenpotenzen?
x
+
2
y
2
·
2y
5
x
5x
2
+
1
3
·
x
+
1
·
y
3
Was ist der Unterschied zwischen dem Assoziativgesetz und dem Distributivgesetz?
#425
Unterscheide zwischen
  • a · (b · c) = a · b · c   (A-Gesetz)
  • a · (b + c) = a · b + a · c   (D-Gesetz)