Gegeben ist ein rechtwinkliges Dreieck. Gib die Formel an, welche die drei markierten Größen (zwei Seiten und ein Winkel) einbezieht.

  • graphik
     
    sin
    Winkel
    =
    Gegenkathete
    Hypotenuse
     
    cos
    Winkel
    =
    Ankathete
    Hypotenuse
     
    tan
     
    Winkel
    =
    Gegenkathete
    Ankathete
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie lauten die Formeln für Sinus, Kosinus und Tangens im rechtwinkligen Dreieck?
#454
Sei α ein Winkel < 90° im rechtwinkligen Dreieck. Mit "Gegenkathete" sei die Kathete gemeint, die α gegenüberliegt, mit "Ankathete" diejenige, die an α anliegt. Dann gelten folgende Zusammenhänge:
  • sin(α)= Gegenkathete / Hypotenuse
  • cos(α)= Ankathete / Hypotenuse
  • tan(α)= Gegenkathete / Ankathete
Beispiel 1
Von einem rechtwinkligen Dreieck mit ∠C = 90° ist bekannt: a = 3 und β = 32°. Berechne die restlichen Seiten und Winkel.
Beispiel 2
In einem rechtwinkligen Dreieck mit rechtem Winkel bei C ist bekannt: b = 10, c = 11. Berechne β.