Hilfe
  • Allgemeine Hilfe zu diesem Level
    Kombinierte Anwendung von Sinus- und Kosinussatz.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 3 in Level 5
  • Berechne die fehlenden Größen und kreuze richtig an. Zum Weiterrechnen die Zwischenergebnisse mit Taschenrechnergenauigkeit verwenden (ANS-Taste).
  • Skizze:
     
    graphik
    c ≈
    α ≈
    β ≈
     
          
     
    5,91
     
    35,97°
     
    44,83°
     
          
     
    6,77
     
    45,17°
     
    61,75°
     
          
     
    7,21
     
    32,17°
     
    58,18°
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Was besagt der Sinussatz in der Trigonometrie?
#647
Gegeben ist ein Dreieck ABC, in dem die Winkel α, β und γ den Seiten a, b und c gegenüberliegen. Nach dem Sinussatz gilt:

sin(α)/a = sin(β)/b = sin(γ)/c

Beispiel
Das erste Beispiel in folgendem Video zeigt, wie man den Sinussatz anwendet.
Wie lautet der Kosinussatz und wie wird er angewendet?
#648
Gegeben ist ein Dreieck ABC, in dem die Winkel α, β und γ den Seiten a, b und c gegenüberliegen. Nach dem Kosinussatz gilt:

a² = b² + c² − 2bc · cos(α)

b² = a² + c² − 2ac · cos(β)

c² = a² + b² − 2ab · cos(γ)

Am besten, man merkt sich den Satz so:

"(beliebige) Seite zum Quadrat = Summe der anderen beiden Seitenquadrate minus 2 mal Produkt dieser Seiten mal cos vom Zwischenwinkel"

Beispiel
Das folgende Video zeigt anhand eines Beispiels, wie man den Kosinussatz anwendet.
Gemäß dem erweiterten Sinussatz gilt für die Fläche eines beliebigen Dreiecks:

A = 0,5 · a · b · sin(γ) = 0,5 · a · c · sin(β) = 0,5 · b · c · sin(α)

Man benötigt für die Flächenbestimmung also die Längen zweier (beliebiger) Seiten und deren Zwischenwinkel.