Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Jede lineare Gleichung mit einer Unbekannten kann auch zeichnerisch gelöst werden: Die Terme links und rechts vom Ist-gleich-Zeichen werden dabei als Geraden interpretiert (y = ...). Zeichne die Geraden ein und schaue, ob und - wenn ja - wo sie sich schneiden.

    Spezialfall: Besteht der Term links oder rechts vom Ist-gleich-Zeichen nur aus einer Zahl c, so handelt es sich um eine waagrechte Gerade durch den Punkt (0|c). Ist diese Zahl c = 0, so handelt es sich um die x-Achse.

Löse folgende Gleichung zeichnerisch. Suche dazu die passende(n) Gerade(n) und lies ab. Um sicher zu gehen, überprüfe durch Rechnung, bevor du das Ergebnis abschickst.

1
2
3
 
x
+
1
=
1
4
An Gerade Nr. liest man ab: x=.
graphik
  • Nebenrechnung
Lernvideo
Lineare Gleichungssysteme, einfache Beispiele

Jede lineare Gleichung mit einer Unbekannten kann auch zeichnerisch gelöst werden: Die Terme links und rechts vom Ist-gleich-Zeichen werden dabei als Geraden interpretiert (y = ...). Zeichne die Geraden ein und schaue, ob und - wenn ja - wo sie sich schneiden.

Spezialfall: Besteht der Term links oder rechts vom Ist-gleich-Zeichen nur aus einer Zahl c, so handelt es sich um eine waagrechte Gerade durch den Punkt (0|c). Ist diese Zahl c = 0, so handelt es sich um die x-Achse.

Beispiel
Löse durch Zeichnung:
a
 
2
1
2
 
x
=
3
+
1,5
 
x
 
     
 
b
3x
+
0,25
=
1
2
Jede lineare Gleichung mit zwei Variablen x und y kann als Gerade interpretiert werden. Jeder Punkt (x- und y-Koordinate) der Gerade stellt eine von unendlich vielen Lösungen dar.
Beispiel
0,6x
0,75y
=
1,8
Stelle diese Gleichung als Gerade dar und lies drei Lösungen ab.
Ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten kann graphisch übersetzt werden:

Jede Gleichung (=Zeile) entspricht einer Geraden. Die Lösung des Gleichungssystems entspricht dann dem Schnittpunkt beider Geraden. Beachte die Sonderfälle:

  • keine Lösung bedeutet, dass die Geraden echt parallel sind
  • unendlich viele Lösungen bedeutet, dass die Geraden identisch sind
Eine lineare Funktion mit der Gleichung y = m·x + b ergibt grafisch immer eine Gerade. Dabei ist m die Steigung (zeigt an, wie stark die Gerade steigt oder fällt) und b der y-Achsenabschnitt (zeigt an, wo die Gerade die y-Achse schneidet) der Gerade.
  • Ist m positiv, so steigt die Gerade (von links nach rechts)
  • Ist m negativ, so fällt die Gerade (von links nach rechts)
  • Ist m = 0, so verläuft die Gerade parallel zur x-Achse
Beispiel
Bestimme zeichnerisch: Welchen y-Achsenabschnitt besitzt die Gerade g, die durch den Punkt (-3 ; -1) geht und parallel ist zur Geraden h mit der Gleichung y = 1 − 0,25x ?