Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Untersuchung von Verknüpfungen mit der ln-Funktion, Matheübungen
Kurvendiskussion von Funktionen, die sich unter anderem aus dem ln zusammensetzen - Lehrplan G9 (5.-13. Klasse) - 15 Aufgaben in 4 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Für diesen Aufgabentyp steht keine spezielle Hilfe zur Verfügung.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 2
in Level 4
Löse die Aufgabe Schritt für Schritt.
Gegeben ist die Schar von Funktionen
f
k
mit
f
k
x
=
k
·
ln
x
2
+
k
und
k
∈
ℝ
+
mit jeweils maximalem Definitionsbereich
D
=
ℝ
. Der Graph von
f
k
wird mit
G
k
bezeichnet.
a) Weise nach, dass die Graphen aller Scharfunktionen die gleiche Symmetrieeigenschaft besitzen.
b) Ermittle das Verhalten von f an den Rändern von
D
f
.
c) Bestimme in Abhängigkeit von k Anzahl und Lage der Nullstellen von
f
k
.
d) Zeige, dass alle Funktionen der Schar das gleiche Monotonieverhalten besitzen.
e) Ermittle den Wert von k, für den das Minimum von
f
k
den kleinstmöglichen Wert annimmt. Gib den zugehörigen Tiefpunkt von
f
k
an.
f) Berechne für die beiden Graphen
G
k
mit
k
=
1
e
bzw.
k
=
1
jeweils die Nullstellen und die Funktionswerte an den Stellen
x
=
2
und
x
=
4
. Zeichne die beiden Graphen auf der Grundlage aller bisherigen Ergebnisse im Intervall
−
4
≤
x
≤
4
.
Schritt 1 von 10
Zu a)
Welche der folgenden Terme stimmen überein?
−
k
·
ln
−
x
2
+
k
k
·
ln
−
x
2
+
k
k
·
ln
x
2
+
k
k
·
ln
x
2
−
k
Welche Eigenschaft haben somit alle Graphen
G
k
?
Achsensymmetrie bezüglich der x-Achse
Achsensymmetrie bezüglich der y-Achse
Punktsymmetrie bezüglich des Ursprungs
Ergebnis prüfen
keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Wie kann eine Funktion f(x) abgewandelt werden, um ihren Graphen G
f
zu strecken, stauchen, verschieben oder zu spiegeln?
#488
h ( x ) =
G
h
geht aus G
f
hervor durch
f ( x + a )
Verschiebung um |a| Einheiten nach rechts (a < 0) bzw. links (a > 0)
f ( x ) + a
Verschiebung um |a| Einheiten nach oben (a > 0) bzw. unten (a < 0)
a · f ( x ), a > 0
Streckung (a > 1) bzw. Stauchung (a < 1) in y-Richtung
− f ( x )
Spiegelung an der x-Achse
f ( a · x ), a > 0
Streckung mit Faktor 1/a in x-Richtung
f ( −x )
Spiegelung an der y-Achse
Beispiel
Gegeben ist die Funktion f mit
f
x
=
e
·
ln
x
x
2
und maximalem Definitionsbereich
D
f
. Der Graph von f wird mit
G
f
bezeichnet.
a) Gib
D
f
an.
b) Ermittle das Verhalten von f an den Rändern der Definitionsmenge.
c) Berechne alle Nullstellen von f.
d) Bestimme Lage und Art aller Extrempunkte von
G
f
.
e) Berechne f(8) und zeichne
G
f
auf der Grundlage aller bisherigen Ergebnisse im Intervall
0
<
x
≤
8
.
f) Gib die Wertemenge von f an.
Titel
×
...
Schließen
Speichern
Abbrechen