Hilfe
  • Entscheidend für die Art des Terms ist der letzte Rechenschritt. Dabei ist zu beachten: Klammer vor Potenz vor Punkt vor Strich. Fehlt zwischen den Teiltermen das Rechenzeichen, so ist "Mal" gemeint, z.B. 7 (2 + x) = 7·(2 + x)
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Um was für eine Art Term handelt es sich jeweils im Zähler und im Nenner?

  • 2x
    2
     
    2
    x
    2
    x
     
    2
    x
    Beim Zähler handelt es sich um und beim Nenner um .
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was muss man beim Kürzen von Bruchtermen beachten?
#280
Ein Bruchterm lässt sich kürzen, wenn Zähler und Nenner (als Produkt dargestellt) in einem Faktor übereinstimmen. Das setzt, wie schon gesagt, Produkte auf beiden Seiten des Bruchstrichs voraus. Aus Summen oder Differenzen heraus darf nicht gekürzt werden!
Beispiel
Mit welchen Faktoren kann jeweils gekürzt werden?
6x
2
1
2x
2
  ;  
6x
·
x
1
2x
2
  ;   
6
 
x
1
2
2
 
1
x
Wie bestimmt man die Art eines Terms bei mehreren Rechenzeichen?
#279
Entscheidend für die Art des Terms ist der letzte Rechenschritt. Dabei ist zu beachten: Klammer vor Potenz vor Punkt vor Strich. Fehlt zwischen den Teiltermen das Rechenzeichen, so ist "Mal" gemeint, z.B. 7 (2 + x) = 7·(2 + x)
Beispiel
Um was für einen Term handelt es sich jeweils im Zähler und im Nenner?
2
+
3
·
x
2
 
x
1
Was bedeutet das Kürzen von Bruchtermen?
#281
"Kürzen" bedeutet, dass man Zähler- und Nennerterm durch dieselbe Zahl oder durch dieselbe Variable oder durch denselben Teilterm dividiert.
Beispiel
Kürze so weit wie möglich.
10x
·
3
x
2
12x
4x
2
Wie kann man Bruchterme mit Summen oder Differenzen im Zähler oder Nenner kürzen?
#282
Differenzen und Summen können evtl. durch Ausklammern geeigneter Zahlen, Variablen oder Teilterme in Produkte übergeführt werden. Hat man Glück, lässt sich dadurch ein Bruchterm (weiter) kürzen.
Was versteht man unter dem Erweitern von Bruchtermen?
#283
"Erweitern" eines Bruchterms bedeutet, dass man Zähler- und Nennerterm mit derselben Zahl, derselben Variable oder demselben Term multipliziert.

Liegt z.B. der Nenner des erweiterten Bruchterms vor, so muss man diesen durch den ursprünglichen Nenner teilen, um den Erweiterungsfaktor zu bestimmen.

Beispiel
Ergänze den Zähler des erweiterten Bruchterms:
4x
·
y
+
1
3a
2
=
?
15a
3
 
b
2
·
x
·
y
+
1
2
Was muss man bei der Addition oder Subtraktion von Bruchtermen beachten?
#286
Sofern die Nenner gleich sind, können die Zählerterme addiert bzw. subtrahiert werden.
Wie macht man zwei Bruchterme gleichnamig für Addition oder Subtraktion?
#287
Sofern die Nenner nicht gleich sind, müssen bei Addition und Subtraktion zunächst die Bruchterme gleichnamig gemacht werden. Dies geschieht durch Erweitern, manchmal in Kombination mit Kürzen.
Beispiel
Fasse zusammen und vereinfache.
7
a
5
+
3
a