Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Winkelberechnung, Matheübungen
Bestimmung einzelner Winkel an Geraden- und Parallelenkreuzungen, in Dreiecken und in Figuren mit mehr als drei Ecken; Innenwinkelsumme im Dreieck und in Vielecken - Lehrplan - 71 Aufgaben in 12 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Hilfe zum Thema
Um einen bestimmten Winkel in einer komplizierten Figur zu berechnen, benötigst du oft mehrere Zwischenschritte. Wähle wiederholt geeignete Dreiecke aus, in denen zwei Winkel bekannt sind, und berechne den dritten. So tastest du dich Schritt für Schritt an den eigentlich gesuchten Winkel heran.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 5
in Level 7
Berechne den gesuchten Winkel. Mit "w" ist die Winkelhalbierende gemeint.
Zwischenschritte aktivieren
ε
=
°
Ergebnis prüfen
keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die
Hilfe
zu dieser Aufgabe an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Wo treten Stufen- und Wechselwinkel auf und wie werden sie beschrieben?
#139
Werden zwei parallele Geraden a und b von einer dritten Gerade c geschnitten, so ergeben sich zwei Schnittpunkte P und Q. Diese sind jeweils Scheitel von vier Winkeln. Ein Winkel mit Scheitel P und ein Winkel mit Scheitel Q heißen:
Stufenwinkel
, wenn sie sich auf derselben Seite von c befinden und wenn sie bzgl. der Parallelen a und b ebenfalls auf derselben Seite liegen, wie z.B. hier:
Wechselwinkel
, wenn sie bzgl. c und bzgl. der Parallelen a und b auf unterschiedlichen Seiten liegen, wie z.B. hier:
Stufenwinkel- und Wechselwinkelpaare sind jeweils gleich groß.
Wie berechnet man den fehlenden Innenwinkel in einem Dreieck, wenn zwei Winkel bekannt sind?
#134
Die Summe aller Innenwinkel im Dreieck beträgt 180°. Sind zwei Innenwinkel bekannt, berechnet man den dritten, indem man die angegebenen Winkel von 180° abzieht.
Wie berechnet man den unbekannten Innenwinkel eines Vierecks, wenn die anderen drei bekannt sind?
#137
Die Summe aller Innenwinkel im Viereck beträgt 360°. Sind drei Innenwinkel bekannt, berechnet man den vierten, indem man die angegebenen Winkel von 360° abzieht.
Was besagt die Achsensymmetrie über die Winkel in einem Dreieck?
#383
In jedem achsensymmetrischen Dreieck sind (mindestens) zwei Winkel gleich groß.
Welche Aussagen lassen sich über die Winkel in einem beliebigen Trapez treffen?
#138
In jedem Trapez treten Paare von Winkeln auf, die sich zu 180° ergänzen.
Wie berechnet man einen Winkel in einer komplizierten Figur?
#135
Um einen bestimmten Winkel in einer komplizierten Figur zu berechnen, benötigst du oft mehrere Zwischenschritte. Wähle wiederholt geeignete Dreiecke aus, in denen zwei Winkel bekannt sind, und berechne den dritten. So tastest du dich Schritt für Schritt an den eigentlich gesuchten Winkel heran.
Beispiel
Es soll der Winkel ε berechnet werden, wobei bekannt ist, dass w Winkelhalbierende von ∠BAC ist (siehe Abbildung).
Beispiel
ε=?
Wie berechnet man die Innenwinkelsumme in Polygonen wie Dreieck, Viereck, Fünfeck usw.?
#136
Bei einem beliebigen Vieleck mit n Ecken erhält man die Summe der Innenwinkel, indem man von der Eckenanzahl zwei abzieht und das Ergebnis mit 180° multipliziert:
Viereck: 2 · 180°
Fünfeck: 3 · 180°
...
n-Eck: (n −2) · 180°
Titel
×
...
Schließen
Speichern
Abbrechen