Wie funktioniert die Multiplikation von quadratischen Matrizen?
Matrizen-Multiplikation
Zwei quadratische Matrizen können miteinander multipliziert werden. Das Ergebnis ist wieder eine quadratische Matrix.
Zum Multiplizieren zweier Matrizen müssen die Zeilenvektoren der ersten Matrix mit den Spaltenvektoren der zweiten Matrix multipliziert werden. Der Eintrag in der m-ten Zeile und n-ten Spalte der Produktmatrix ist das Ergebnis des Skalarprodukts aus Zeile m der ersten Matrix und Spalte n der zweiten Matrix.
Spezialfall: Insbesondere können auch Potenzen einer quadratischen Matrix berechnet werden. Dies wird bei der Berechnung von Zustandsverteilungen interessant.
Es gilt: Die Potenz einer stochastischen Matrix ist wieder eine stochastische Matrix.
Beispiel 1
Berechne die Produktmatrix aus A und B:
A | = |
|
B | = |
|
| = | ? |
Lösung:
- Exemplarische Berechnung des ersten Eintrags
| = |
|
= |
|
= |
|
- Berechnung der restlichen Einträge
| = |
|
| = |
|
|
Beispiel 2
Ein stochastischer Prozess ist gegeben durch Übergangsmatrix U und Startzustand |
|
U | = |
|
| = |
|
| auf zwei Methoden. |
Lösung:
- Berechnung Schritt für Schritt
| = |
|
Also:
| = |
|
| = |
|
| = |
|
| = |
|
| = |
|
| = |
|
| = |
|
| = |
|
| = |
|
| = |
|
|
- Berechnung mit einer Matrix-Potenz
| = |
|
Also:
| = |
|
| = |
|
| = |
|
|
Bemerkung: Du solltest beide Methoden beherrschen. Allerdings ist die Berechnung Schritt für Schritt nur für wenige Fälle geeignet. Bei größerer Schrittzahl macht nur die Berechnung mit dem GTR über die Matrix-Potenz Sinn.
Siehe auch