Hilfe
  • Trage die gegebenen Werte in einer x-y-Tabelle ein. Je nachdem, ob Proportionalität oder umgekehrte Proportionalität vorliegt, lässt sich der gesuchte Werte nach dem Prinzip der Quotiengleichheit oder Produktgleichheit bestimmen.
  • Proportional heißt: Wenn man die eine Größe (x) verdoppelt, verdoppelt sich auch die andere (y). Wenn man x verdreifacht, verdreifacht sich auch y u.s.w.. Da der Quotient aus y und x konstant ist, spricht man von Quotientengleichheit. Den konstanten Quotientenwert y : x nennt man Proportionalitätsfaktor.

    Umgekehrt (indirekt, anti-) proportional heißt: Wenn man x verdoppelt, halbiert sich y. Wenn man x verdreifacht, verringert sich y auf den dritten Teil u.s.w.. Da das Produkt aus x und y konstant ist, spricht man von Produktgleichheit.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Berechne.

  • Herr A. hat 12500 Euro angelegt und dafür 562,5 Euro Zinsen erhalten. Wie viel Kapital wäre nötig gewesen, um 1000 Euro Zinsen zu erhalten?
    K = € (gerundet auf ganze Euro)
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was bedeutet proportional, umgekehrt proportional, produktgleich, quotientengleich und Proportionalitätsfaktor?
#141

Proportional heißt: Wenn man die eine Größe (x) verdoppelt, verdoppelt sich auch die andere (y). Wenn man x verdreifacht, verdreifacht sich auch y u.s.w.. Da der Quotient aus y und x konstant ist, spricht man von Quotientengleichheit. Den konstanten Quotientenwert y : x nennt man Proportionalitätsfaktor.

Umgekehrt (indirekt, anti-) proportional heißt: Wenn man x verdoppelt, halbiert sich y. Wenn man x verdreifacht, verringert sich y auf den dritten Teil u.s.w.. Da das Produkt aus x und y konstant ist, spricht man von Produktgleichheit.

Beispiel 1
Stelle fest, ob der Zusammenhang zwischen den folgenden Größen jeweils indirekt (synonym: umgekehrt/anti-) proportional ist:
a) x=Geschwindigkeit eines Autos | y=Fahrzeit für eine bestimmte Strecke
b) x=Anzahl der Maler | y=Arbeitsdauer für das Streichen einer Wohnung
c) x=Anzahl der bereits gelesenen Seiten | y=noch ungelesene Seiten eines Buches
Beispiel 2
Die Größen x und y stehen in einem umgekehrt proportionalen (antiproportionalem) Zusammenhang. Fülle die Tabelle vollständig aus.
x
11
3
1
7
y
14
1
14
7
11
Beispiel 3
Prüfe, ob der Zusammenhang proportional, umgekehrt proportional (antiproportional) oder weder noch ist. Gib in den ersten beiden Fällen den noch fehlenden Tabellenwert an.
x
1,8
5
2
1
1
3
y
2
1,44
31
2,7
Beispiel 4
Ein Maler benötigt 7,5 Stunden, um eine Fläche von 300 m² zu bemalen. Wieviel Zeit benötigt er für eine Fläche von 500 m²?
Wie sehen die Diagramme bei proportionalen und umgekehrt proportionalen Beziehungen aus?
#147

Jede Wertetabelle lässt sich grafisch umsetzen, indem man die einzelnen Spalten als Punkte mit entsprechender x- und y-Koordinate liest.

Merke:
  • Bei Proportionalität ergibt sich eine Gerade, die durch den Ursprung des Koordinatensystems geht.
  • Bei umgekehrter Proportionalität (Antiproportionalität) ergibt sich eine sogenannte Hyperbel, deren Äste sich auf die x- und y-Achse zubewegen.
Beispiel
Welcher Graph beschreibt den Zusammenhang zwischen der Fahrzeit und der durchschnittlichen Geschwindigkeit bei einer Strecke von 400 km?
graphik