Hilfe
  • Leitet man f ab, so erhält man f ´ (erste Ableitung von f).

    Leitet man f ´ ab, so erhält man f ´´ (zweite Ableitung von f).

    Um f ´´ bilden zu können, muss f zweimal differenzierbar sein.

Variablenpotenzen sind in der Form x^n einzugeben.

  • f
     
    x
    =
    3x
    5
    3x
    2
    +
    2x
    f ''
     
    x
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie lautet die Ableitung von f(x) = a·x^m und welche zwei Spezialfälle gibt es dazu?
#754
Wenn f(x) = a · xm mit a ∈ ℝ und m ∈ ℤ \ {0}, dann ist
f (x) = a · m · x m−1.

Spezialfälle:

  • f(x) = a · x ⇒ f ´ (x) = a
  • f(x) = a ⇒ f ´ (x) = 0

Beispiel
f
 
x
=
1
2x
10
f ´
 
x
=
?
Wie lautet die Ableitung der Funktion f(x) = a · x^r?
#341
Wenn f(x) = a · xr mit a ∈ ℝ und r ∈ ℚ \ {0}, dann ist
f (x) = a · r · x r−1.
Beispiel
f
 
x
=
1
4
·
x
1
3
+
7x
2
+
2
3
f '
 
x
=
?
Wie erhält man die zweite Ableitung f´´ und unter welchen Bedingungen existiert sie?
#513
Leitet man f ab, so erhält man f ´ (erste Ableitung von f).

Leitet man f ´ ab, so erhält man f ´´ (zweite Ableitung von f).

Um f ´´ bilden zu können, muss f zweimal differenzierbar sein.
Wie bestimmt man die Steigung der Tangente an einem Punkt eines Graphen?
#480
Sei T: y = mx + t die Tangente an Gf im Punkt P[x0|f(0)]. Dann gilt:

m = f ´ (x0)

Beispiel 1
f
 
x
=
1
3x
2
+
5x
Bestimme die Tangente an Gf an der Stelle 
x
=
0,6.
Beispiel 2
f
 
x
=
x
3
+
2x
+
1
Bestimme die Tangente an Gf an der Stelle 
x
=
1.
Beispiel 3
f
 
x
=
x
3
+
2x
+
1
Bestimme alle Tangenten an Gf, die parallel sind zu 
g: y
=
7
3
 
x
2.