Hilfe
  • Allgemeine Hilfe zu diesem Level
    Zum Wurzelziehen: Gesucht ist eine Zahl, die mit sich selbst malgenommen die Zahl unter der Wurzel ergibt.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 7 in Level 2
  • Ergänze.
  • 625
    =
    , denn 
    2
    =
    .
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Quadratwurzel
Lernvideo

Quadratwurzel

Kanal: Mathegym

Was bedeutet der Ausdruck a² in der Mathematik?
#712

a2 = a · a

Beispiel
Berechne:
5
2
=
?
80
2
=
?
0,3
2
=
?
4
2
=
?
Was ist die Definition von \( \sqrt{a} \), was ist der Radikand und welche Bedingungen muss dieser erfüllen?
#224
Die Wurzel einer nicht negativen Zahl a ist diejenige nicht negative Zahl Zahl, die quadriert a ergibt, also

(√a)2 = a.

Die Zahl unter der Wurzel nennt man Radikand.

Laut dieser Definition gilt also: Weder der Radikand noch der Wert des Wurzelterms dürfen/können negativ sein!
Beispiel 1
0,0016
=
16
10000
=
4
100
2
=
4
100
=
0,04
Beispiel 2
3
6
25
=
81
25
=
9
5
2
=
9
5
Die Wurzel einer nicht negativen Zahl a ist diejenige nicht negative Zahl Zahl, die quadriert a ergibt.
Die Quadratwurzel ziehen und quadrieren sind Operationen, die sich gegenseitig aufheben. Es gilt:
(√a)2 = a.
√a2=√(a ∙ a) = a
Beispiel
Berechne:
7
2
=
7
2
=
Wie kann man Wurzelausdrücke mit Minus-Vorzeichen berechnen?
#1302
Die Wurzel einer nicht negativen Zahl a ist diejenige nicht negative Zahl Zahl, die quadriert a ergibt, also (√a)2 = a.
Beachte:
√(- a)²=a, denn √(- a)²=√(- a) ∙ (- a)=√a²=a ("Minus mal Minus ergibt Plus.")
-√a²= - a, denn -√a²= -1 ∙ √a²= - 1 ∙ a= - a
√- a hat für a > 0 keine Lösung, da man aus einer negativen Zahl keine Wurzel ziehen kann.
Beispiel
Berechne ohne Taschenrechner. Gib "!" ein, falls es keine Lösung gibt.
3
2
=
9
=
9
=
Wie kann man \( \sqrt{a^2} \) vereinfachen, wenn a auch negativ sein könnte?
#229
Beachte beim Rechnen mit Variablen, dass (weil a auch negativ sein könnte)

√(a²) = | a |

Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben

√(a²) = −a

Ob eine Variable unter der Wurzel positiv oder negativ ist, erschließt sich oft indirekt aus der Aufgabenstellung.

Beispiel
Gegeben ist der Term 
x
6
.
Welche Werte können für x eingesetzt werden und wie lautet der vereinfachte Term?