Löse die Textaufgabe! Ergebnis(se) falls erforderlich auf die 3. Dezimalstelle gerundet eingeben!

  • Aus 3 Garben einer guten Ernte, 2 Garben einer mittelmäßigen Ernte und 1 Garbe einer schlechten Ernte erhält man den Ertrag von 39 Körben.
    Aus 2 Garben einer guten Ernte, 3 Garben einer mittelmäßigen Ernte und 1 Garbe einer schlechten Ernte erhält man 34 Körbe.
    Aus 1 Garbe guter Ernte, 2 Garben mittelmäßiger Ernte und 3 Garbe schlechter Ernte erhält man 26 Körbe.
    Wie viel ist der Ertrag je einer Garbe der guten, der mittelmäßigen und der schlechten Ernte ?
    Ertrag gute Ernte:
     
     
    Körbe
    Ertrag mittlere Ernte:
     
     
    Körbe
    Ertrag schlechte Ernte:
     
     
    Körbe
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie erkennt man die Lösungsmengen eines Gleichungssystems in Stufenform oder mit dem GTR?
#732

Lösungsmengen von Gleichungssystemen

Ein lineares Gleichungssystem kann unterschiedliche Lösungsmengen besitzen:

Das Gleichungssystem hat...

  • genau eine Lösung: Bei der Umformung in Stufenform bleiben alle Variablen erhalten bzw. bei der Lösung mit dem GTR entsteht am Display bis auf die letzte Spalte eine Einheitsmatrix (Diagonaleinträge 1, restliche Einträge 0), in der letzten Spalte steht die Lösung des Gleichungssystems.
  • keine Lösung: bei den Umformungen in Stufenform ergibt sich irgendwann ein Widerspruch (0x3=1) bzw. am Display des GTR erscheinen in der untersten Zeile nur Nullen BIS AUF DEN LETZTEN Eintrag, der von Null verschieden ist.
  • unendlich viele Lösungen: bei den Umformungen in Stufenform ergibt sich eine allgemein gültige Gleichung (0x3=0) bzw. am Display des GTR sind ALLE Einträge der untersten Zeile gleich Null.
Beispiel
Bestimme die Lösungsmenge folgender Gleichungssysteme mit dem Gaußverfahren:
5x
1
5x
1
10x
1
 
x
2
+
x
2
+
2x
2
 
+
4x
3
+
x
3
8x
3
 
=
5
 
 
 
=
11
 
 
 
=
8
 
 
 
 
          
 
2x
1
4x
1
 
 
 
5x
2
9x
2
2x
2
 
+
2x
3
 
 
+
8x
3
 
=
7
 
 
 
=
15
 
 
 
=
2