Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema

    Die Menge N (natürliche Zahlen) enthält alle Zahlen, die man zum Zählen benötigt:
    N = {1, 2, 3, ...}

    Die Menge Z (ganze Zahlen) enthält darüber hinaus auch alle Gegenzahlen sowie die Null, also
    Z = {0, ±1, ±2, ...}

    Die Menge Q (rationale Zahlen) enthält darüber hinaus auch alle nichtganzen Brüche; Q besteht also aus allen (positiven und negativen) Bruchzahlen, d.h.
    Q = {p/q, wobei p und q ganze Zahlen sind und q nicht Null}

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 10
  • Ordne die gegebenen rationalen Zahlen der richtigen Farbe zu (pro Zeile ein Kreuz). Achtung: "Orange" bedeutet "rational, aber nicht ganz". "Gelb" bedeutet "ganz, aber nicht natürlich".
  • graphik
    grau    
     
    gelb    
     
    orange        
    120
    grau    
     
    gelb    
     
    orange        
     
    3
    5
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Ganze Zahlen, Anordnung und Betrag
Lernvideo

Ganze Zahlen, Anordnung und Betrag

Kanal: Mathegym

Beispiel 1
Ordne der Größe nach: 
1,1
     
4
5
     
1,01
     
1
 
1
10
     
1
4
     
0,2
Beispiel 2
Trage richtig ein:  
1
1
4
  ;  0,5  ;  0,75  ;  
5
6
graphik
Was sind die Zahlenmengen N, Z und Q und wie hängen sie zusammen?
#310

Die Menge N (natürliche Zahlen) enthält alle Zahlen, die man zum Zählen benötigt:
N = {1, 2, 3, ...}

Die Menge Z (ganze Zahlen) enthält darüber hinaus auch alle Gegenzahlen sowie die Null, also
Z = {0, ±1, ±2, ...}

Die Menge Q (rationale Zahlen) enthält darüber hinaus auch alle nichtganzen Brüche; Q besteht also aus allen (positiven und negativen) Bruchzahlen, d.h.
Q = {p/q, wobei p und q ganze Zahlen sind und q nicht Null}

Beispiel
Ordne die Zahlen den gefärbten Bereichen zu:
4
    
    
4
3
5
    
    
12
6
graphik
Was bedeutet der Betrag einer ganzen Zahl?
#3
Eine Zahl ist
  • umso größer, je weiter rechts sie sich auf der Zahlengerade befindet
  • umso kleiner, je weiter links sie steht
Der Betrag |a| gibt an, wie weit die Zahl a von 0 entfernt ist. Für a ≠ 0 ist |a| stets positiv.
Beispiel 1
Setze das Ungleichheitszeichen richtig.
3
 
?
 
1
3
 
?
 
1
Beispiel 2
Welche Zahlen können jeweils für x eingesetzt werden und wie viele sind es?
x
>
100
 
     
 
x
>
100
 
     
 
x
<
100
 
     
 
x
 
 
100