Hilfe
  • Die Krümmungsintervalle einer zweimal differenzierbaren Funktion ermittelt man mit Hilfe einer Vorzeichenuntersuchung von f ´´. Bestimme dazu zunächst die Nullstellen von f ´´.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Bestimme das Krümmungsverhalten von Gf.

  • f
     
    x
    =
    1
    12
     
    x
    4
    +
    1
    12
     
    x
    3
    3
    4
     
    x
    2
    +
    x
    2
    3
    ;
    ID
    f
    =
    ID
    max
    Rechtskrümmung für
         
     
     
    x
    <
    1,5
     
         
     
     
    x
    <
    1
     
         
     
     
    1,5
    <
    x
    <
    1
         
     
     
    1,5
    <
    x
    <
    2
     
         
     
     
    x
    >
    1,5
     
         
     
     
    x
    >
    1
     
         
     
     
    x
    >
    2
    Linkskrümmung für
         
     
     
    x
    <
    1,5
     
         
     
     
    x
    <
    1
     
         
     
     
    1,5
    <
    x
    <
    1
         
     
     
    1,5
    <
    x
    <
    2
     
         
     
     
    x
    >
    1,5
     
         
     
     
    x
    >
    1
     
         
     
     
    x
    >
    2
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie kann man mit der zweiten Ableitung feststellen, ob an einer Nullstelle der ersten Ableitung ein relatives Extremum vorliegt und welcher Art es ist?
#516

Sei a eine Nullstelle der ersten Ableitung, also f ´(a) = 0. Dann gilt:

f ´´ (a ) < 0 ⇒ relatives Maximum bei x = a

f ´´ (a ) > 0 ⇒ relatives Minimum bei x = a

Vorsicht: Aus f ´´ (a) = 0 folgt NICHT, dass kein relatives Extremum vorliegt. Überprüfe in diesem Fall f ´ auf Vorzeichenwechsel an der Nullstelle x = a. Zur Erinnerung:

VZW +/- von f ´ ⇔ relatives Maximum

VZW -/+ von f ´ ⇔ relatives Minimum

kein VZW von f´ ⇔ Terrassenpunkt

Wie bestimmt man die Krümmungsintervalle eines Funktionsgraphen?
#515
Die Krümmungsintervalle einer zweimal differenzierbaren Funktion ermittelt man mit Hilfe einer Vorzeichenuntersuchung von f ´´. Bestimme dazu zunächst die Nullstellen von f ´´.
Beispiel
Bestimme das Krümmungsverhalten der Funktion 
f
 
x
=
x
4
2x
3
9
2
 
x
2
+
2x.
Stellen, an denen sich die Krümmung eines Graphen ändert, nennt man Wendepunkte. Sofern f zweimal differenzierbar ist, gilt der Zusammenhang:

Gf besitzt einen Wendepunkt an der Stelle x = a

f ´´ (a) = 0 und Vorzeichenwechsel von f ´´ bei x = a

Beispiel
Bestimme sämtliche Wendepunkte von Gf sowie die Gleichung(en) ihrer Wendetangente(n).
f
 
x
=
1
4
 
x
3
+
6x
2
45x
1