Zeitaufgabe
Stoppuhr
18 Sekunden

Bei der folgenden Aufgabe wird die Zeit gestoppt! Benutze am besten die Tabulator-Taste und die Return-Taste für eine schnelle Eingabe!

Wenn dir Rechnen unter Zeitdruck nicht liegt, dann lass diesen Level einfach aus und klick den nächsten Level an!

Auf die Plätze... fertig...

Trickreich rechnen mit A-,K- und D-Gesetz
Lernvideo

Trickreich rechnen mit A-,K- und D-Gesetz

Kanal: Mathegym

Wie löst man eine Klammer auf, die addiert oder subtrahiert wird?
#412
Gehe beim Auflösen einer Klammer, die addiert oder subtrahiert wird, am besten in folgenden Schritten vor:
  1. Ist die erste Zahl in der Klammer positiv, so schreibe ein positives Vorzeichen davor.
  2. Löse jetzt die Klammer auf, d.h. lass die Klammer sowie das Plus- oder Minuszeichen davor verschwinden.
  3. Bei einer Plus-Klammer kann der usprüngliche Klammerinhalt einfach abgeschrieben werden; bei einer Minusklammer müssen alle Plus- und Minuszeichen umgedreht werden.
Beispiel
Plusklammer:
124
+
23
124
=
 
     [23 mit Vorzeichen versehen]
124
+
+
23
124
=
 
     [Klammer auflösen und Inhalt abschreiben]
124
 
+
23
124
=
23
- - - - - - - - - - - - - - - - -
Minusklammer
124
23
124
=
 
     [23 mit Vorzeichen versehen]
124
+
23
124
=
 
     [Klammer auflösen und Inhalt mit umgedrehten Vor-/Rechenzeichen abschreiben]
124
 
23
+
124
=
225
Was besagt das Distributivgesetz in der Mathematik?
#119
Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel
Löse durch Ausmultiplizieren:
6
·
40
+
7
=
?
·
40
+
6
·
?
=
?
+
?
=
?
Was bedeutet Ausklammern und welches Rechengesetz wird dabei angewendet?
#253
Ausklammern heißt, dass man Terme wie

a · b ± a · c

a : c ± b : c

vereinfacht zu

a · (b ± c)

(a ± b) : c

Das Gesetz hinter dieser Rechneregel heißt Distributivgesetz.
Beispiel
23
·
9
+
9
·
12
=
23
·
9
+
12
·
9
=
23
+
12
·
9
=
 
     [9 ausgeklammert]
11
·
9
=
99
Was ist bei Termen, die ausschließlich aus Summen bestehen, immer möglich?
#170
Bei einer Summe mit mehr als drei Summanden kann man die Reihenfolge der Rechnung beliebig gestalten (Assoziativ- und Kommutativgesetz). Dadurch wird die Rechnung manchmal viel einfacher.
Beispiel
158
+
87
+
32
=
158
+
32
190
+
87
277
Wie kann man die Reihenfolge der Rechnung bei Termen mit ausschließlich Multiplikationen gestalten?
#132
Bei einem Produkt mit mehr als zwei Faktoren kann man die Reihenfolge der Rechnung beliebig gestalten (Assoziativ- und Kommutativgesetz). Dadurch wird die Rechnung manchmal viel einfacher.
Beispiel
12
·
17
·
5
=
12
·
5
60
·
17
=
600
+
420
=
1020