Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
2.1 Die natürliche Exponentialfunktion und ihre Ableitung, Matheübungen
Natürliche Exponentialfunktion - Lehrwerk Lambacher Schweizer (5.-13. Klasse) - 13 Aufgaben in 3 Levels
Hilfe
Für diesen Aufgabentyp steht keine spezielle Hilfe zur Verfügung.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 6
in Level 1
Wie lautet der passende Funktionsterm f(x)?
e
x
−
2
e
2
−
x
e
x
−
2
+
1
e
2
−
x
+
1
Ergebnis prüfen
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Lernvideo
Die Eulersche Zahl e
Kanal: Mathegym
Wie bewirkt man durch Änderung des Funktionsterms eine Spiegelung an der x-Achse oder y-Achse sowie eine Verschiebung in y-Richtung?
#697
Regeln zur Transformation von Graphen
Der Graf einer Funktion f wird
... an der x-Achse gespiegelt: Minus vor den Term, d.h. g(x) = - f(x)
... an der y-Achse gespiegelt : x durch (-x) ersetzen, d.h. g(x) = f(-x)
... um b in y-Richtung verschoben: b zum Term addieren, d.h. g(x) = f(x) +b
Wie lautet die Gleichung der Asymptote bei Exponentialfunktionen vom Typ f(x) = a e^(kx) + b?
#704
Asymptote bei Exponentialfunktionen vom Typ
f(x) = a e
kx
+b
Die Gleichung der Asymptote lautet y = b.
Wenn k positiv ist, schmiegt sich der Graph von f nach links an die Asymptote.
Wenn k negativ ist, schmiegt sich der Graph von f nach rechts an die Asymptote.
Titel
×
...
Schließen
Speichern
Abbrechen